CHEMSTRY
 A EUROPEAN JOURNAL

Supporting Information

© Copyright Wiley-VCH Verlag GmbH \& Co. KGaA, 69451 Weinheim, 2013

Total Syntheses and Biological Reassessment of Lactimidomycin, Isomigrastatin and Congener Glutarimide Antibiotics

Kévin Micoine, ${ }^{[a]}$ Peter Persich, ${ }^{[a]}$ Josep Llaveria, ${ }^{[a]}$ My-Hanh Lam, ${ }^{[b]}$

Andreas Maderna, ${ }^{[\mathrm{c}]}$ Frank Loganzo, ${ }^{[b]}$ and Alois Fürstner* ${ }^{[a]}$

Contents

Bioassays S2
Crystallographic Abstract S4
General S5
Experimental Procedures \& Analytical and Spectral Data S5
NMR Spectra S36

Bioassays

Cell lines: 4T1 (murine breast carcinoma), MDA-MB-231 (human breast carcinoma), and LoVo (human colon carcinoma) cell lines were obtained from ATCC. 4T1 cells were grown in RPMI 1640 (Life Technologies Cat \# 22400-089) supplemented with 10% FBS and nonessential amino acids. MDA-MB-231 cells were grown in MEM (Life Technologies Cat \# 11095-080) supplemented with 10% FBS, non-essential amino acids and sodium pyruvate. LoVo were grown in DMEM/ F-12 (1:1) medium (Life Technologies Cat \# 10565-018) supplemented with 10 \% FBS.

Cytotoxicity assay: Cells in $100 \mu \mathrm{~L}$ medium were cultured in a 96 -well plate at the following cell densities such that confluence upon cell harvest was approximately 80% : For 1 day assay, 4T1 cells $=3000$ cells per well; MDA-MB-231 cells $=8000$ cells per well; LoVo cells $=12000$ cells per well. For 4 day assay, 4T1 cells $=1000$ cells per well; MDA-MB-231 cells $=4000$ cells per well; LoVo cells $=5000$ cells per well. Cells were maintained in a humidified chamber $\left(37^{\circ} \mathrm{C}, 5 \% \mathrm{CO} 2\right)$ overnight, then the cells were treated with compounds by adding $50 \mu \mathrm{~L}$ of 3 X stocks in duplicate at 10 concentrations. Cells were incubated with compounds for one or four days. On the specified harvest day, $30 \mu \mathrm{~L}$ of Celltiter 96 Aqueous One Solution (MTS reagents; Promega, Cat \# G3582) was added to the cells and incubated 1.5 h at $37^{\circ} \mathrm{C}$, then absorbance was measured at 490 nm on a Victor plate reader (Perkin Elmer, Waltham, MA). Relative cell viability was determined as a percentage of untreated control wells. IC_{50} values were calculated using four parameter logistic model \#203 with XLfit v4.2 (IDBS, Guildford, Surry, UK).

Scratch wound healing assay: Cells (200,000 cells per well) were seeded into a 24 -welltissue culture plate and allowed to grow in a humidified chamber $\left(37^{\circ} \mathrm{C}, 5 \% \mathrm{CO} 2\right)$. The next day, the confluent monolayer of cells was scratched with a sterile pipette tip using a straight edge to create an empty space of approximately 1 mm width in the middle of the well. Cells were then washed once with media to remove debris. Fresh media containing compounds at various concentrations were added to wells and incubated overnight in a humidified chamber. Migration was quantified by computer-based pixel calculation of the clearing, and data are reported as percent of control vs. DMSO treated wells.

Platypus cell migration assay: Cells were seeded into a 96-well Collagen-coated Platypus plate (Platypus technologies Cat No. CMACC1.101) with cell seeding stoppers in place and incubated overnight in a humidified chamber $\left(37^{\circ} \mathrm{C}, 5 \% \mathrm{CO}_{2}\right)$. Stoppers were removed and the cells washed gently with $100 \mu \mathrm{~L}$ sterile PBS to remove unattached cells. Fresh media (100 $\mu \mathrm{l}$) with or without compounds in DMSO (6 replicates/compound) was added to each well and the plates were incubated for 24 h in a humidified chamber to allow migration. Reference wells for pre-migration controls (time $=0$) were obtained by leaving the cell stoppers in place until the end of the migration period. Migration was stopped by removing the media then cells were washed gently with $100 \mu \mathrm{~L}$ PBS containing Ca^{++}and Mg^{++}. Cells were then fluorescently stained with $0.5 \mu \mathrm{~g} / \mathrm{mL}$ calcein AM (R\&D Systems, Cat No. 4892-010-K) in PBS with Ca^{++}and Mg^{++}for $30-60 \mathrm{~min}$ at $37^{\circ} \mathrm{C}$. The Oris Detection Mask was attached to the
plate bottom and fluorescence from the migrated cells was read in a microplate reader at 485/528 nm excitation /emission. Data are normalized to DMSO-treated control wells.

Transwell migration assay: Cells were starved overnight in serum-free media then collected by trypsinization, counted, and aliquoted into 1.5 mL centrifuge tubes (0.5 million cells in 1.5 mL serum-free medium). Compounds in DMSO were added to the cells in quadruplicate and incubated for one hour at room temperature. These pre-treated cells were then added to the inserts of a 24 -multiwell Insert System (BD Falcon, Cat No. 351185) at $300 \mu \mathrm{~L} / \mathrm{insert}$. Migration was started by lowering the inserts onto a 24 -well plate containing complete medium (1 mL) with the same drug concentration used for the corresponding insert. Blank samples received DMSO in serum-free media in both inserts and bottom wells. Plates were incubated for 24 h in a humidified chamber $\left(37^{\circ} \mathrm{C}, 5 \% \mathrm{CO}_{2}\right)$ to allow cell migration. At the harvest time point, media in inserts and bottom wells were discarded and the inserts were dipped quickly into a feeder tray (BD Falcon, Cat No. 351186) containing PBS to wash the outside of the inserts. Inserts were carefully washed twice with PBS, then lowered into a 24well plate (BD Falcon 353047) containing 0.5 mL of $1.7 \mu \mathrm{~g} / \mathrm{mL}$ calcein AM (R\&D Systems, Cat No. 4892-010-K) in cell dissociation solution (Gibco, Cat No. 13151-014). After 30 min incubation at $37^{\circ} \mathrm{C}$, the inserts were removed and fluorescence at $485 / 528 \mathrm{~nm}$ excitation/emission was read in a fluorescence plate reader. Migration is calculated by comparing signal in the lower chamber of compound treated samples vs. DMSO-only control samples.

Crystallographic Abstract

Figure S-1. Structure of cycloalkyne $\mathbf{6 3}$ in the solid state.
$\mathrm{C}_{20} \mathrm{H}_{30} \mathrm{O}_{5}, M_{r}=350.44 \mathrm{~g} \cdot \mathrm{~mol}^{-1}$, colorless block, crystal size $0.33 \times 0.32 \times 0.15 \mathrm{~mm}$, orthorhombic, space group $P 2_{1} 2_{2} 2_{1}, a=7.7235(3) \AA, b=14.4643(6) \AA, c=16.7847(7) \AA$, $V=1875.10(13) \AA^{3}, T=100 \mathrm{~K}, Z=4, D_{\text {calc }}=1.241 \mathrm{~g} \cdot \mathrm{~cm}^{3}, \lambda=1.54178 \AA, \mu\left(C u-K_{\alpha}\right)=$ $0.712 \mathrm{~mm}^{-1}$, Semi-empirical absorption correction ($\mathrm{T}_{\min }=0.76, \mathrm{~T}_{\max }=0.91$), Bruker AXS X8 Proteum diffractometer, diffractometer, $4.03<\theta<67.05^{\circ}$, 42749 measured reflections, 3326 independent reflections, 3243 reflections with $I>2 \sigma(I)$, Structure solved by direct methods and refined by full-matrix least-squares against F^{2} to $R_{I}=0.026[I>2 \sigma(I)], w R_{2}=0.064,232$ parameters, H atoms riding, $S=1.067$, absolute structure parameter $=-0.04(13)$, residual electron density $+0.1 /-0.2 \mathrm{e}^{-3}$.

The anisotropic displacement parameters are drawn at the 50% probability level; hydrogen atoms are omitted for clarity. CCDC 913898 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif

General. All reactions were carried out under Ar in flame-dried glassware. The solvents used were purified by distillation over the drying agents indicated and were transferred under Ar: THF, $\mathrm{Et}_{2} \mathrm{O}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$, HMPA $\left(\mathrm{CaH}_{2}\right)$, hexane, toluene $(\mathrm{Na} / \mathrm{K})$, $\mathrm{MeOH}(\mathrm{Mg})$. Flash chromatography (FC): Merck silica gel 60 (230-400 mesh). NMR: Spectra were recorded on Bruker AMX 300, AV 400, or AVIII 600 spectrometer in the solvents indicated; chemical shifts (δ) are given in ppm relative to TMS, coupling constants (J) in Hz. The solvent signals were used as references and the chemical shifts converted to the TMS scale $\left(\mathrm{CDCl}_{3}: \delta_{\mathrm{C}} \equiv 77.0\right.$ ppm; residual CHCl_{3} in $\mathrm{CDCl}_{3}: \delta_{\mathrm{H}} \equiv 7.26 \mathrm{ppm}$). IR: Spectrum One (Perkin-Elmer) spectrometer, wavenumbers (\tilde{v}) in cm^{-1}. MS (EI): Finnigan MAT 8200 (70 eV), ESI-MS: ESQ3000 (Bruker), accurate mass determinations: Bruker APEX III FT-MS (7 T magnet) or Mat 95 (Finnigan). Unless stated otherwise, all commercially available compounds (Fluka, Lancaster, Aldrich) were used as received.

The preparation of compounds 26-33 is described in detail in the Supporting Information of our preliminary communication, cf. ref. ${ }^{1}$

Compound S1: O-(Benzotriazol-1-yl)- $N, N, N^{\prime}, N^{\prime}$ 'tetramethyluronium hexafluorophosphate (HBTU, $243 \mathrm{mg}, 0.64 \mathrm{mmol}$) and triethylamine ($120 \mu \mathrm{~L}$,
 0.87 mmol) were added to a solution of 2-(2,6-dioxopiperidin-4-yl)acetic acid 41a $(100 \mathrm{mg}, 0.58 \mathrm{mmol})^{2}$ in THF (6 mL). The mixture was stirred at ambient temperature for 2 h before naphthalene-2-thiol ($103 \mathrm{mg}, 0.64 \mathrm{mmol}$) was added. Stirring was continued for 1.5 h before all volatile materials were evaporated. The residue was purified by flash chromatography (hexanes/EtOAc, 2/1) to give product $\mathbf{S} 1$ as a white solid (200 mg , quant.). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=8.10$ (br s, 1 H), $7.94(\mathrm{~s}, 1 \mathrm{H})$, $7.91-7.82(\mathrm{~m}, 3 \mathrm{H}), 7.58-7.51(\mathrm{~m}, 2 \mathrm{H}), 7.43(\mathrm{dd}, J=8.5,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.84(\mathrm{~d}, J=4.0 \mathrm{~Hz}$, $1 \mathrm{H}), 2.81-2.71(\mathrm{~m}, 4 \mathrm{H}), 2.47-2.37 \mathrm{ppm}(\mathrm{m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=195.0$ (C), $170.9(\mathrm{C}), 134.5(\mathrm{CH}), 133.5(\mathrm{C}), 133.4(\mathrm{C}), 130.6(\mathrm{CH}), 129.0(\mathrm{CH}), 128.0(\mathrm{CH}), 127.8$ $(\mathrm{CH}), 127.4(\mathrm{CH}), 126.7(\mathrm{CH}), 123.9(\mathrm{C}), 47.3\left(\mathrm{CH}_{2}\right), 37.1\left(\mathrm{CH}_{2}\right), 27.6 \mathrm{ppm}(\mathrm{CH})$; MS (EI): $m / z(\%): 313$ (9) $\left[\mathrm{M}^{+}, 160\right.$ (100), 128 (4), 115 (22), 112 (10), 55 (8); HRMS (ESI): m/z: calcd for $\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{NO}_{3} \mathrm{SNa}[\mathrm{M}+\mathrm{Na}]^{+}: 336.0665$; found 336.0667.

Compound 41b: Palladium on charcoal ($5 \% w / w, 180 \mathrm{mg}$) and triethylsilane ($2.2 \mathrm{~mL}, 13.4$ $\mathrm{mmol})$ were added to a solution of thioester $\mathbf{S} 1(420 \mathrm{mg}, 1.34 \mathrm{mmol})$ in
 THF (5 mL) and the resulting suspension was stirred for 7 h before it was diluted with acetone (20 mL) and filtered through a pad of Celite. The filtrate was evaporated and the residue purified by flash chromatography (hexanes/EtOAc, 2/8 $\rightarrow 1 / 9$) to give aldehyde 41b as a white solid (125 $\mathrm{mg}, 60 \%) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=9.78(\mathrm{~s}, 1 \mathrm{H}), 8.10(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 2.82-2.71(\mathrm{~m}, 3 \mathrm{H})$, $2.61(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.36 \mathrm{ppm}(\mathrm{dd}, J=17.5,10.5 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=198.6(\mathrm{C}), 171.1(\mathrm{C}), 47.8\left(\mathrm{CH}_{2}\right), 37.2\left(\mathrm{CH}_{2}\right), 24.6 \mathrm{ppm}(\mathrm{CH}) ; \mathrm{MS}(\mathrm{EI}): \mathrm{m} / \mathrm{z}(\%): 155$

[^0](< 1) $[\mathrm{M}]^{+}, 127$ (82), 112 (17), 99 (23), 84 (16), 69 (15), 55 (32), 42 (100), 39 (38), 29 (24); HRMS (EI): m/z: calcd for $\mathrm{C}_{7} \mathrm{H}_{9} \mathrm{NO}_{3} \mathrm{Na}[\mathrm{M}]^{+}: 155.0582$; found 155.0581 .

Compound S2. NaH ($855 \mathrm{mg}, 35.6 \mathrm{mmol}$) was added in several portions to a solution of tertbutyl acetoacetate $34(5.3 \mathrm{~mL}, 32.4 \mathrm{mmol})$ in THF (65 mL) at $0^{\circ} \mathrm{C}$. After the gas evolution had ceased, $n \mathrm{BuLi}(1.6 \mathrm{M}$ in hexanes, $21.3 \mathrm{~mL}, 34.0 \mathrm{mmol}$) was added dropwise before a solution of 1-bromo-2-butyne ($5.39 \mathrm{~g}, 40.5 \mathrm{mmol}$) was slowly introduced via canula. Stirring was continued for 1 h at $0^{\circ} \mathrm{C}$ before the resulting mixture was poured into a mixture of $\mathrm{Et}_{2} \mathrm{O}$ and $\mathrm{HCl}(2 \mathrm{M})$. The aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}$ and the combined organic layers were dried over MgSO_{4} and evaporated. The residue was purified by flash chromatography (hexanes/EtOAc, $95 / 5 \rightarrow 80 / 20$) to afford product $\mathbf{S 2}$ as a yellow oil ($6.56 \mathrm{~g}, 96 \%$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=3.37(\mathrm{~s}, 2 \mathrm{H}), 2.73(\mathrm{t}, J=7.3 \mathrm{~Hz}$, $2 \mathrm{H}), 2.41(\mathrm{tq}, J=7.3,2.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.75(\mathrm{t}, J=2.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.47 \mathrm{ppm}(\mathrm{s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=201.7(\mathrm{C}), 166.4(\mathrm{C}), 82.2(\mathrm{C}), 77.5(\mathrm{C}), 76.3(\mathrm{C}), 50.8\left(\mathrm{CH}_{2}\right), 42.3\left(\mathrm{CH}_{2}\right)$, $28.1\left(\mathrm{CH}_{3}\right), 13.4\left(\mathrm{CH}_{2}\right), 3.6 \mathrm{ppm}\left(\mathrm{CH}_{3}\right)$; IR (film): 2979, 2923, 1725, 1393, 1353, 1254, 1150, 1172, 1030, 966, 907, 841, 795, $670 \mathrm{~cm}^{-1}$; MS (EI): m/z (\%): 195 (0.6), 155 (2), 154 (10), 153 (13), 139 (28), 137 (17), 109 (6), 108 (14), 96 (7), 95 (100), 94 (5), 67 (25), 66 (6), 65 (6), 59 (7), 57 (96), 53 (6), 43 (7), 41 (31), 39 (8), 29 (10), 27 (5); HRMS (ESI): m/z: calcd for $\mathrm{C}_{12} \mathrm{H}_{18} \mathrm{O}_{3} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 233.1147$; found 233.1148.

Compound S3. $\mathrm{NaBH}_{4}(3.93 \mathrm{~g}, 103.8 \mathrm{mmol})$ was added in several portions to a solution of

ketone $\mathbf{S 2}(7.29 \mathrm{~g}, 34.6 \mathrm{mmol})$ in THF $(200 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. After stirring for 3 h at ambient temperature, the reaction was quenched with sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}$ and diluted with tert-butyl methyl ether. The aqueous layer was extracted with tert-butyl methyl ether and the combined extracts were dried over MgSO_{4} and evaporated. The residue was purified by flash chromatography (hexanes/EtOAc, 95/5 \rightarrow 90/10) to give product $\mathbf{S 3}$ as a colorless oil $(5.15 \mathrm{~g}, 70 \%) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=4.09$ (dddd, $J=12.4,8.4,4.1$, $4.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.15(\mathrm{~d}, J=3.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.44(\mathrm{dd}, J=16.4,3.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.35(\mathrm{dd}, J=16.4,8.8$ $\mathrm{Hz}, 1 \mathrm{H}), 2.28(\mathrm{tq}, J=7.3,2.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.77(\mathrm{t}, J=2.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.70-1.54(\mathrm{~m}, 2 \mathrm{H}), 1.47 \mathrm{ppm}$ $(\mathrm{s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=172.4(\mathrm{C}), 81.4(\mathrm{C}), 78.5(\mathrm{C}), 76.1(\mathrm{C}), 67.2(\mathrm{CH})$, $42.3\left(\mathrm{CH}_{2}\right)$, $35.6\left(\mathrm{CH}_{2}\right)$, $28.2\left(\mathrm{CH}_{3}\right), 15.2\left(\mathrm{CH}_{2}\right), 3.6 \mathrm{ppm}\left(\mathrm{CH}_{3}\right)$; IR (film): 3464, 2978, 2921, 1723, 1435, 1393, 1367, 1304, 1253, 1147, 1071, 943, 844, $761 \mathrm{~cm}^{-1}$; MS (EI): m/z (\%): 197 (0.4), 139 (6), 138 (18), 121 (6), 110 (5), 97 (39), 96 (28), 95 (11), 93 (17), 81 (6), 79 (7), 69 (8), 67 (9), 59 (14), 57 (100), 56 (10), 55 (7), 53 (10), 43 (20), 41 (41), 39 (12), 29 (16), 27 (7); HRMS (ESI): m/z: calcd for $\mathrm{C}_{12} \mathrm{H}_{20} \mathrm{O}_{3} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$: 235.1305 ; found 235.1304.

Compound S4. Triethylamine ($5.0 \mathrm{~mL}, 36.2 \mathrm{mmol}$), benzoyl chloride ($4.2 \mathrm{~mL}, 36.2 \mathrm{mmol}$), and DMAP ($4.42 \mathrm{~g}, 36.2 \mathrm{mmol}$) were successively added to a solution of alcohol $\mathbf{S 3}(5.13 \mathrm{~g}, 24.1 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(120 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. The mixture was stirred for 20 h at ambient temperature before the reaction was quenched with sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}$. The aqueous layer was extracted with tert-butyl methyl ether and the combined extracts were dried over MgSO_{4} and evaporated. The residue was purified by flash chromatography (hexanes/EtOAc, 95/5 \rightarrow 90/10) to give product $\mathbf{S 4}$ as a colorless oil ($6.77 \mathrm{~g}, 89 \%$). ${ }^{1} \mathrm{H}$ NMR
$\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.03(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.55(\mathrm{tt}, J=7.5,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.43(\mathrm{tt}, J=$ $7.5,1.5 \mathrm{~Hz}, 2 \mathrm{H}), 5.52$ (dddd, $J=7.5,7.3,5.8,5.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.70(\mathrm{dd}, J=15.1,7.3 \mathrm{~Hz}, 1 \mathrm{H})$, $2.62(\mathrm{dd}, J=15.1,5.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.26(\mathrm{tq}, J=7.3,2.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.03-1.90(\mathrm{~m}, 2 \mathrm{H}), 1.71(\mathrm{t}, J=$ 2.5, 3H), $1.38 \mathrm{ppm}(\mathrm{s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=169.3$ (C), 165.7 (C), 132.9 $(\mathrm{CH}), 130.2(\mathrm{C}), 129.6(\mathrm{CH}), 128.3(\mathrm{CH}), 81.0(\mathrm{C}), 77.7(\mathrm{C}), 76.2(\mathrm{C}), 70.6(\mathrm{CH}), 40.5\left(\mathrm{CH}_{2}\right)$, $33.4\left(\mathrm{CH}_{2}\right), 27.9\left(\mathrm{CH}_{3}\right), 15.0\left(\mathrm{CH}_{2}\right), 3.7 \mathrm{ppm}\left(\mathrm{CH}_{3}\right)$; IR (film): 2978, 2921, 1718, 1602, 1585, $1451,1392,1367,1314,1270,1217,1150,1109,1069,1041,1025,948,842,709,687 \mathrm{~cm}^{-1}$; MS (EI): m / z (\%): 261 (7), 260 (39), 259 (14), 243 (8), 174 (6), 138 (75), 123 (9), 121 (34), 110 (8), 106 (8), 105 (100), 95 (10), 93 (30), 91 (8), 79 (11), 77 (34), 57 (34), 51 (5), 41 (9) ; HRMS (ESI): $m / z:$ calcd for $\mathrm{C}_{19} \mathrm{H}_{24} \mathrm{O}_{4} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 339.1564$; found 339.1567.

Compound 35. Trifluoroacetic acid ($9.8 \mathrm{~mL}, 132 \mathrm{mmol}$) was added to a solution of ester $\mathbf{S 4}$
 $(6.98 \mathrm{~g}, 22 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(100 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$. The mixture was stirred at ambient temperature for $10 \mathrm{~h} . \mathrm{H}_{2} \mathrm{O}(80 \mathrm{~mL})$ was then added, the aqueous layer was extracted with ethyl acetate, and the combined organic phases were dried over MgSO_{4} and evaporated. The residue was dissolved in a small amount of toluene and the solution was evaporated to remove residual trifluoroacetic acid by aceotropic distillation; this operation was repeated five times to give product 35 as an orange oil (5.78 g , quant.). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=10.54$ (br s, $1 \mathrm{H}), 8.02(\mathrm{~d}, J=7.1,2 \mathrm{H}), 7.56(\mathrm{tt}, J=7.4,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.43(\mathrm{t}, J=7.4,2 \mathrm{H}), 5.53$ (ddt, $J=$ $5.8,6.8,6.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.84(\mathrm{dd}, J=15.9,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.77(\mathrm{dd}, J=15.9,5.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.31-$ $2.25(\mathrm{~m}, 2 \mathrm{H}), 2.06-1.93(\mathrm{~m}, 2 \mathrm{H}), 1.71 \mathrm{ppm}(\mathrm{t}, J=2.5 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $\delta=176.2(\mathrm{C}), 165.8(\mathrm{C}), 133.0(\mathrm{CH}), 130.0(\mathrm{C}), 129.6(\mathrm{CH}), 128.3(\mathrm{CH}), 77.5(\mathrm{C}), 76.5(\mathrm{C})$, $70.0(\mathrm{CH}), 38.7\left(\mathrm{CH}_{2}\right), 33.1\left(\mathrm{CH}_{2}\right), 15.0\left(\mathrm{CH}_{2}\right), 3.3 \mathrm{ppm}\left(\mathrm{CH}_{3}\right)$; IR (film): 2922, 1790, 1712, 1602, 1584, 1451, 1316, 1270, 1211, 1158, 1110, 1070, 1041, 1026, 935, 844, 805, 709, 685 cm^{-1}; MS (EI): m/z (\%): 260 (5) [M] ${ }^{+}, 259$ (15), 199 (5), 174 (5), 139 (6), 138 (61), 123 (6), 110 (6), 106 (8), 105 (100), 95 (13), 93 (29), 92 (5), 91 (11), 79 (10), 78 (5), 77 (46), 53 (6), 51 (9); HRMS (ESI): m / z : calcd for $\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]^{+}: 261.1127$; found 261.1124.

Compound 36. 2,4,6-Trichlorobenzoyl chloride ($2.05 \mathrm{~mL}, 14.4 \mathrm{mmol}$) and triethylamine
 $(1.85 \mathrm{~mL}, 14.4 \mathrm{mmol})$ were successively added to a solution of acid $35(2.9 \mathrm{~g}, 11.3 \mathrm{mmol})$ in toluene (100 mL) at $0^{\circ} \mathrm{C}$. The resulting mixture was stirred at this temperature for 20 min before a solution of alcohol 33 ($3.6 \mathrm{~g}, 10.3 \mathrm{mmol}$) was added, followed by DMAP ($0.63 \mathrm{~g}, 5.0 \mathrm{mmol}$). The mixture was stirred at ambient temperature for 1 h 15 min before it was diluted with ethyl acetate and aq. citric acid solution (10%). The organic layer was successively washed with brine, saturated NaHCO_{3} solution, and brine prior to drying over MgSO_{4} and evaporation. The residue was purified by flash chromatography (hexanes/EtOAc, 98/2 \rightarrow 95/5) to give ester 36 as a yellow oil $(5.0 \mathrm{~g}, 82 \%) .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.01(\mathrm{~d}$, $J=7.4 \mathrm{~Hz}, 4 \mathrm{H}, 2$ dia.), 7.54 (t, $J=7.4 \mathrm{~Hz}, 2 \mathrm{H}, 2$ dia.), $7.46-7.37$ (m, $4 \mathrm{H}, 2$ dia.), 5.59-5.50 (m, $2 \mathrm{H}, 2$ dia.), 5.46 (dd, $J=10.2,10.2 \mathrm{~Hz}, 1 \mathrm{H}, 1$ dia.), 5.44 (dd, $J=10.5,10.5 \mathrm{~Hz}, 1 \mathrm{H}, 1$ dia.), 5.31 (dq, $J=10.7,2.2 \mathrm{~Hz}, 1 \mathrm{H}, 1$ dia.), 5.29 (dq, $J=10.6,2.2 \mathrm{~Hz}, 1 \mathrm{H}, 1$ dia.), 5.25 (d, $J=10.1 \mathrm{~Hz}, 1 \mathrm{H}, 1$ dia.), 5.23 (d, $J=9.7 \mathrm{~Hz}, 1 \mathrm{H}, 1$ dia.), 5.03 (d, $J=9.0 \mathrm{~Hz}, 2 \mathrm{H}, 2$ dia.),
3.71-3.62 (m, $2 \mathrm{H}, 2$ dia.), 3.18-3.05 (m, $2 \mathrm{H}, 2$ dia.), 2.84 (dd, $J=15.3,6.7 \mathrm{~Hz}, 2 \mathrm{H}, 2$ dia.), 2.73 (dd, $J=15.4,6.1 \mathrm{~Hz}, 2 \mathrm{H}, 2$ dia.), 2.38-2.30 (m, $2 \mathrm{H}, 2$ dia.), 2.30-2.22 (m, $4 \mathrm{H}, 2$ dia.), 2.04-1.92 (m, 4 H, 2 dia., overlap), 1.96 (d, $J=2.0 \mathrm{~Hz}, 6 \mathrm{H}, 2$ dia., overlap), 1.70 (t, $J=2.5$ $\mathrm{Hz}, 6 \mathrm{H}, 2$ dia.), 1.59 (d, $J=1.2 \mathrm{~Hz}, 3 \mathrm{H}, 1$ dia.), 1.54 (d, $J=1.2 \mathrm{~Hz}, 3 \mathrm{H}, 1$ dia.), 0.98-0.90 ($\mathrm{m}, 30 \mathrm{H}, 2$ dia.), 0.89 ($\mathrm{d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}, 1$ dia.), 0.84 ($\mathrm{d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}, 1$ dia.), 0.60-0.52 ppm (m, $12 \mathrm{H}, 2$ dia.); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=169.2$ (C), 169.1 (C), 165.8 (C), 165.7 (C), 143.0 (CH, 2 dia.), 132.9 (CH, 2 dia.), 132.4 (CH), 132.4 (CH), 131.9 (C, 2 dia.), 130.2 (C, 2 dia.), 129.6 (CH, 2 dia.), 128.3 (CH, 2 dia.), 109.6 (CH), 109.6 (CH), 90.0 (C, 2 dia.), 83.1 (CH, 2 dia.), 77.6 (C, 2 dia.), 76.3 (C, 2 dia.), 76.1 (C, 2 dia.), 71.1 (CH), 71.1 $(\mathrm{CH}), 70.5(\mathrm{CH}), 70.4(\mathrm{CH}), 39.3\left(\mathrm{CH}_{2}\right), 39.3\left(\mathrm{CH}_{2}\right), 39.2(\mathrm{CH}), 39.1(\mathrm{CH}), 36.9(\mathrm{CH}), 36.8$ $(\mathrm{CH}), 33.2\left(\mathrm{CH}_{2}\right), 33.1\left(\mathrm{CH}_{2}\right), 20.3\left(\mathrm{CH}_{3}\right), 20.2\left(\mathrm{CH}_{3}\right), 16.5\left(\mathrm{CH}_{3}\right), 16.5\left(\mathrm{CH}_{3}\right), 15.4\left(\mathrm{CH}_{3}\right)$, $15.3\left(\mathrm{CH}_{3}\right), 15.0\left(\mathrm{CH}_{2}\right), 15.0\left(\mathrm{CH}_{2}\right), 12.1\left(\mathrm{CH}_{3}\right), 12.1\left(\mathrm{CH}_{3}\right), 6.9\left(3 \mathrm{CH}_{3}, 2\right.$ dia.), $5.0(3 \mathrm{x}$ $\mathrm{CH}_{2}, 2$ dia. $), 4.3\left(\mathrm{CH}_{3}, 2\right.$ dia. $), 3.4 \mathrm{ppm}\left(\mathrm{CH}_{3}, 2\right.$ dia. $)$; IR (film): 3419, 2956, 2917, 2877, 1789, 1721, 1452, 1370, 1315, 1266, 1212, 1173, 1111, 1071, 1017, 998, 910, 869, 733, 704 cm^{-1}; HRMS (ESI): $\mathrm{m} / \mathrm{z}:$ calcd for $\mathrm{C}_{36} \mathrm{H}_{52} \mathrm{O}_{5} \mathrm{SiNa}[\mathrm{M}+\mathrm{Na}]^{+}: 615.3476$; found 615.3471.
Compound 37. Activated molecular sieves ($5 \AA$, ca. 20 g) were added to a solution of diyne $36(2.00 \mathrm{~g}, 3.4 \mathrm{mmol})$ in toluene (1.2 L) and the resulting
 suspension was heated to $80^{\circ} \mathrm{C}$ before a solution of complex 21 ($0.22 \mathrm{~g}, 0.17 \mathrm{mmol}$) in toluene (10 mL) was introduced. The mixture was stirred at $80^{\circ} \mathrm{C}$ for 3 h before it was allowed to reach ambient temperature. Insoluble materials were filtered off through a pad of silica which was carefully rinsed with ethyl acetate. The combined filtrates were evaporated and the residue purified by flash chromatography (hexanes/EtOAc, $1 / 0 \rightarrow 95 / 5$) to give cycloalkyne 37 as a yellow oil ($1.56 \mathrm{~g}, 85 \%$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=8.09$ (d, $J=8.2 \mathrm{~Hz}, 2 \mathrm{H}, 1$ dia.), 8.02 (d, $J=8.2 \mathrm{~Hz}, 2 \mathrm{H}, 1$ dia.), 7.59-7.51 (m, 2 H, 2 dia.), 7.48-7.39 (m, $4 \mathrm{H}, 2$ dia.), 5.73-5.66 (m, $1 \mathrm{H}, 1$ dia.), 5.60-5.51 ($\mathrm{m}, 2 \mathrm{H}, 2$ dia., overlap), 5.55-5.47 (m, 2 H, 2 dia., overlap), 5.41-5.34 (m, 1 H, 1 dia., overlap), 5.34 (d, $J=9.8 \mathrm{~Hz}, 2 \mathrm{H}, 2$ dia., overlap), 5.23 (d, $J=3.5 \mathrm{~Hz}, 1 \mathrm{H}, 1$ dia.), 5.19 (d, $J=4.2 \mathrm{~Hz}, 1 \mathrm{H}, 1$ dia.), 3.79-3.71 (m, $2 \mathrm{H}, 2$ dia.), $3.37-3.26$ (m, $2 \mathrm{H}, 2$ dia.), 3.17 (dd, $J=$ $17.3,11.4 \mathrm{~Hz}, 1 \mathrm{H}, 1$ dia.), 3.10 (dd, $J=17.3,3.4 \mathrm{~Hz}, 1 \mathrm{H}, 1$ dia.), 2.93 (dd, $J=17.2,4.3 \mathrm{~Hz}$, $1 \mathrm{H}, 1$ dia.), 2.83 (dd, $J=17.3,5.4 \mathrm{~Hz}, 1 \mathrm{H}, 1$ dia.), 2.70-2.54 (m, $2 \mathrm{H}, 2$ dia.), 2.52-2.31 (m, $6 \mathrm{H}, 2$ dia.), 2.10-1.98 (m, 2 H, 2 dia.), 1.64 (d, $J=1.1 \mathrm{~Hz}, 3 \mathrm{H}, 1$ dia.), 1.62 (d, $J=1.1 \mathrm{~Hz}, 3$ H, 1 dia.), 1.06 (d, $J=6.2 \mathrm{~Hz}, 6 \mathrm{H}, 2$ dia.), 1.03 (d, $J=7.1 \mathrm{~Hz}, 3 \mathrm{H}, 1$ dia.), 1.00 (d, $J=6.8$ $\mathrm{Hz}, 3 \mathrm{H}, 1$ dia.), 0.99-0.91 (m, $24 \mathrm{H}, 2$ dia.), 0.62-0.54 ppm (m, $12 \mathrm{H}, 2$ dia.); ${ }^{13} \mathrm{C}$ NMR (100 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=170.0(\mathrm{C}), 169.1(\mathrm{C}), 165.9(\mathrm{C}), 165.3(\mathrm{C}), 144.2(\mathrm{CH}), 144.0(\mathrm{CH}), 135.2$ (C, 2 dia.), $134.1(\mathrm{CH}), 133.7(\mathrm{CH}), 133.0(\mathrm{CH}), 133.0(\mathrm{CH}), 130.3(\mathrm{C}), 129.7(\mathrm{CH}), 129.5$ (CH), 129.4 (C), $128.4(\mathrm{CH}), 128.3(\mathrm{CH}), 110.8(\mathrm{CH}), 110.5(\mathrm{CH}), 93.8(\mathrm{C}), 93.1$ (C), 83.0 $(\mathrm{CH}), 82.2(\mathrm{CH}), 80.0(\mathrm{C}), 79.6(\mathrm{C}), 71.4\left(\mathrm{CH}, 2\right.$ dia.), $70.9(\mathrm{CH}), 70.7(\mathrm{CH}), 39.5\left(\mathrm{CH}_{2}\right)$, $39.5\left(\mathrm{CH}_{2}\right)$, $37.5(\mathrm{CH}), 37.2(\mathrm{CH}), 37.0\left(\mathrm{CH}_{2}, 2\right.$ dia. $), 30.5\left(\mathrm{CH}_{2}\right), 30.2\left(\mathrm{CH}_{2}\right), 21.1\left(\mathrm{CH}_{3}\right)$, $21.0\left(\mathrm{CH}_{3}\right), 17.3\left(\mathrm{CH}_{3}\right), 17.1\left(\mathrm{CH}_{3}\right), 16.2\left(\mathrm{CH}_{3}\right), 16.2\left(\mathrm{CH}_{3}\right), 16.1\left(\mathrm{CH}_{2}\right), 14.5\left(\mathrm{CH}_{3}\right), 14.4$ $\left(\mathrm{CH}_{3}\right), 13.6\left(\mathrm{CH}_{2}\right), 6.9\left(3 \mathrm{xCH}_{3}, 2\right.$ dia.), $5.0 \mathrm{ppm}\left(3 \mathrm{x} \mathrm{CH}_{2}, 2\right.$ dia.); IR (film): 2959, 2933, 2875, 1721, 1451, 1414, 1376, 1334, 1271, 1189, 1166, 1108, 1068, 1025, 963, 943, 880, 804, $740,709 \mathrm{~cm}^{-1}$; MS (EI): $m / z(\%): 494$ (2), 416 (8), 282 (5), 207 (10), 160 (100), 159 (56), 131
(31), 115 (36), 105 (55), 87 (18), 59 (5); HRMS (ESI): m/z: calcd for $\mathrm{C}_{32} \mathrm{H}_{46} \mathrm{O}_{5} \mathrm{SiNa}[\mathrm{M}+$ $\mathrm{Na}]^{+}: 561.3007$; found 561.3003.
Compound 39. $\left[\mathrm{Cp} * \mathrm{Ru}(\mathrm{MeCN})_{3}\right] \mathrm{PF}_{6}(38 \mathrm{mg}, 0.074 \mathrm{mmol})$ and benzyldimethylsilane $(0.47$ $\mathrm{mL}, 2.97 \mathrm{mmol}$) were successively added to a solution of cycloalkyne $37(400 \mathrm{mg}, 0.74 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.5 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. The mixture was stirred at this temperature for 10 min until the catalyst had fully dissolved and then for 1 h at ambient temperature. Next, the solvent was slowly evaporated by a stream of Ar over ca. 30 min , at which point TLC control indicated complete conversion. The residue was purified by flash chromatography (hexanes/EtOAc, $98 / 2 \rightarrow 95 / 5$) to give product 38, which was directly used in the next step.

A solution of anhydrous TBAF (1 m in THF, $3.0 \mathrm{~mL}, 3.0 \mathrm{mmol}$) was added at $0^{\circ} \mathrm{C}$ to a solution of alkenylsilane 38 in THF (1.0 mL) and the resulting orange mixture stirred at ambient temperature for 2 h . For work up, the solution was filtered through a pad of silica which was carefully rinsed with ethyl acetate. The combined filtrates were evaporated and the residue purified by flash chromatography (hexanes/EtOAc, 90/10) to remove traces of the undesired (Z, Z)-diene isomer. Product 39 was thus obtained as a colorless oil ($165 \mathrm{mg}, 73 \%$). $[\alpha]_{D}^{20}=-232.7\left(\mathrm{c}=1, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=6.47(\mathrm{ddd}, J=16.0,10.4,5.4$ $\mathrm{Hz}, 1 \mathrm{H}), 6.04(\mathrm{dd}, J=10.8,10.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.74(\mathrm{dd}, J=15.6,10.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.55(\mathrm{~d}, J=16.1$ $\mathrm{Hz}, 1 \mathrm{H}), 5.40(\mathrm{ddd}, J=15.3,8.8,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.35(\mathrm{~d}, J=4.5 \mathrm{~Hz}, 1 \mathrm{H}$, overlap), 5.33 (d, $J=$ $9.5 \mathrm{~Hz}, 1 \mathrm{H}$, overlap), $5.10(\mathrm{dd}, J=10.9,10.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.60(\mathrm{qd}, J=6.2,6.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.09$ (ddq, $J=11.7,6.2,5.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.59-2.49(\mathrm{~m}, 2 \mathrm{H}), 2.44$ (dqd, $J=9.4,6.5,3.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.01-$ $1.84(\mathrm{~m}, 2 \mathrm{H}), 1.72(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.55(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 1.18(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 3 \mathrm{H}), 0.99(\mathrm{~d}, J=$ $6.7 \mathrm{~Hz}, 3 \mathrm{H}), 0.94 \mathrm{ppm}(\mathrm{d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=166.7$ (C), 146.4 $(\mathrm{CH}), 134.5(\mathrm{CH}), 133.1(\mathrm{CH}), 131.9(\mathrm{C}), 131.7(\mathrm{CH}), 128.9(\mathrm{CH}), 128.3(\mathrm{CH}), 127.7(\mathrm{CH})$, $83.3(\mathrm{CH}), 71.5(\mathrm{CH}), 40.0(\mathrm{CH}), 35.7(\mathrm{CH}), 32.2\left(\mathrm{CH}_{2}\right), 31.1\left(\mathrm{CH}_{2}\right), 20.3\left(\mathrm{CH}_{3}\right), 17.5\left(\mathrm{CH}_{3}\right)$, $16.4\left(\mathrm{CH}_{3}\right), 14.9 \mathrm{ppm}\left(\mathrm{CH}_{3}\right)$; IR (film): 3453, 2964, 2928, 2872, 1709, 1641, 1451, 1376, 1336, 1313, 1259, 1190, 1141, 1085, 1005, 957, 923, 848, 800, 736, $691 \mathrm{~cm}^{-1}$; MS (EI): m/z (\%): 304 (2) $\left[M_{+}\right], 162$ (7), 94 (100), 79 (41), 68 (12), 55 (4), 41 (9); HRMS (ESI): m/z: calcd for $\mathrm{C}_{19} \mathrm{H}_{28} \mathrm{O}_{3} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 327.1931$; found 327.1931.

Compound 19. Oxalyl chloride ($88 \mu \mathrm{~L}, 1.02 \mathrm{mmol}$) was added to a solution of DMSO (0.14 $\mathrm{mL}, 2.0 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ at $-78{ }^{\circ} \mathrm{C}$ before a solution of
 alcohol 39 ($62 \mathrm{mg}, 0.20 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{~mL})$ was added. After 1 h at this temperature, triethylamine $(0.42 \mathrm{~mL}, 3.1 \mathrm{mmol})$ was introduced and stirring continued for 30 min at this temperature and for 1.5 h at $0^{\circ} \mathrm{C}$. The reaction was quenched with sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}$, the aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and the combined organic layers were dried over MgSO_{4} and evaporated. The residue was purified by flash chromatography (hexanes/EtOAc, 90/10) to furnish product 19 as a pale yellow solid (51 mg , $82 \%) .[\alpha]_{D}^{20}=-3.9\left(\mathrm{c}=1, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=6.48$ (ddd, $J=16.0$, $10.4,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.05(\mathrm{dd}, J=10.8,10.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.73(\mathrm{dd}, J=15.6,10.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.55(\mathrm{~d}$, $J=16.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.41$ (ddd, $J=15.6,8.9,6.5 \mathrm{~Hz}, 1 \mathrm{H}$, overlap), $5.39-5.31$ (m, 2H, overlap), $5.08(\mathrm{dd}, J=10.9,10.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.43(\mathrm{dq}, J=9.4,6.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.10(\mathrm{dqd}, J=11.7,6.4,3.2$
$\mathrm{Hz}, 1 \mathrm{H}), 2.60-2.46(\mathrm{~m}, 2 \mathrm{H}), 2.14(\mathrm{~s}, 3 \mathrm{H}), 2.02-1.85(\mathrm{~m}, 2 \mathrm{H}), 1.78(\mathrm{~d}, J=1.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.17(\mathrm{~d}$, $J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.92 \mathrm{ppm}(\mathrm{d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=209.0$ (C), $166.5(\mathrm{C}), 146.6(\mathrm{CH}), 134.5(\mathrm{CH}), 133.3(\mathrm{C}), 131.4(\mathrm{CH}), 129.8(\mathrm{CH}), 129.1(\mathrm{CH}), 128.2$ $(\mathrm{CH}), 127.8(\mathrm{CH}), 82.6(\mathrm{CH}), 46.8(\mathrm{CH}), 36.0(\mathrm{CH}), 32.2\left(\mathrm{CH}_{2}\right), 31.2\left(\mathrm{CH}_{2}\right), 27.9\left(\mathrm{CH}_{3}\right), 17.3$ $\left(\mathrm{CH}_{3}\right), 16.1\left(\mathrm{CH}_{3}\right), 14.9 \mathrm{ppm}\left(\mathrm{CH}_{3}\right)$; IR (film): 2965, 2931, 2872, 1713, 1642, 1453, 1373, 1353, 1313, 1244, 1188, 1140, 1088, 1001, 957, 872, 848, 829, 799, 768, 733, $701 \mathrm{~cm}^{-1}$; MS (EI): $m / z(\%): 302$ (1) [$\left.M_{+}\right], 162$ (8), 94 (100), 79 (42), 68 (12), 53 (2), 43 (11); HRMS (ESI): $\mathrm{m} / \mathrm{z}:$ calcd for $\mathrm{C}_{19} \mathrm{H}_{26} \mathrm{O}_{3} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 325.1774$; found 327.1775.

Lactimidomycin (1). $\mathrm{Me}_{3} \mathrm{SiCl}(0.80 \mathrm{~mL}, 6.20 \mathrm{mmol})$ and triethylamine ($0.86 \mathrm{~mL}, 6.20$ $\mathrm{mmol})$ were added to a solution of ketone 39 (186

 $\mathrm{mg}, 0.61 \mathrm{mmol})$ in THF (15 mL) at $-78^{\circ} \mathrm{C}$. Next, LiHMDS (1 M in THF, $1.23 \mathrm{~mL}, 1.23 \mathrm{mmol}$) was slowly introduced and the resulting mixture stirred at $-78^{\circ} \mathrm{C}$ for 1 h . The reaction was then quenched with pH 7 phosphate buffer and the product extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 10 \mathrm{~mL})$. The combined organic phases were dried over MgSO_{4} and evaporated to give the corresponding silyl enol ether $\mathbf{4 0}$, which was immediately used in the next step without further purification.
Molecular sieves ($4 \AA$, ca. 1.5 g) and aldehyde $\mathbf{4 1 b}(97 \mathrm{mg}, 0.61 \mathrm{mmol})$ were added to a solution of the crude silyl enol ether in propionitrile $(10 \mathrm{~mL})$. The mixture was cooled to $-78{ }^{\circ} \mathrm{C}$ before a solution of compound $\mathbf{4 2}$ [prepared upon stirring of a solution of PhBCl_{2} (94 $\mu \mathrm{L}, 0.70 \mathrm{mmol}$) and N-tosyl-D-tryptophane ($245 \mathrm{mg}, 0.70 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4.5 \mathrm{~mL})$ for 1 h , followed by removal of the solvent ${ }^{3}$ in propionitrile (4.5 mL) was added dropwise. After stirring for 35 h at $-78{ }^{\circ} \mathrm{C}$, the reaction was quenched with sat. aq. $\mathrm{NaHCO}_{3}(15 \mathrm{~mL})$, the aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 20 \mathrm{~mL})$, and the combined organic layers were dried over MgSO_{4} and evaporated. The resulting crude product was dissolved in THF (100 mL) at $0^{\circ} \mathrm{C}$ and treated with 11.0 mL of buffered HF-pyridine solution [prepared from THF $(7.98 \mathrm{~mL})$, pyridine $(2.96 \mathrm{~mL})$ and HF-pyridine complex $(0.65 \mathrm{~mL}, 70 \% \mathrm{w} / \mathrm{w})]$. The mixture was stirred at $0^{\circ} \mathrm{C}$ for 2 h and warmed to ambient temperature for 30 min to complete the desilylation. Dilution with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(100 \mathrm{~mL})$, washing of the organic layer with sat. aq. $\mathrm{NaHCO}_{3}(50 \mathrm{~mL})$ and aq. CuSO_{4} solution ($1 \mathrm{M}, 3 \times 50 \mathrm{~mL}$), drying over MgSO_{4} and evaporation of the solvents left a residue, which was purified by flash chromatography (EtOAc/hexanes, $50 / 50 \rightarrow 100 / 0$) to give product 1 as a white solid ($138 \mathrm{mg}, 50 \%$). $[\alpha]_{D}^{20}=$ $+6.9(\mathrm{c}=0.5, \mathrm{DMSO}) ;{ }^{4}[\alpha]_{D}^{20}=-7.0\left(\mathrm{c}=0.5, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: see Table S-1; ${ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$): see Table S-2; IR (film): 3481, 3239, 2925, 2852, 1695, 1453, 1376, 1259, 1190, 1145, 1084, 1003, 829, 796, 767, 733, $701 \mathrm{~cm}^{-1}$; HRMS (ESI): m/z: calcd for $\mathrm{C}_{26} \mathrm{H}_{35} \mathrm{NO}_{6} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 480.2357$; found 480.2363 .

[^1]Table S-1. Comparison of the recorded ${ }^{1} \mathrm{H}$ NMR data $\left(\mathrm{CDCl}_{3}\right)$ of lactimidomycin (1) with those reported in the literature; ${ }^{5}$ numbering scheme as shown in the Insert.

Position	Literature ($\mathbf{5 0 0} \mathbf{~ M H z)}$ δ (ppm) mult. (J in Hz)	Experimental (600 MHz) δ (ppm) mult. (J in Hz)	$\Delta \delta$
2	5.53 d (16.0)	5.54 d (16.1)	+0.01
3	6.49 ddd (16.0, 10.0, 5.0)	6.47 ddd (16.1, 10.2, 5.2)	-0.02
4	$1.96 \mathrm{~m} / 2.56 \mathrm{~m}$	$1.95 \mathrm{~m} / 2.56 \mathrm{~m}$	-0.01/0
5	$1.96 \mathrm{~m} / 2.54 \mathrm{~m}$	$1.92 \mathrm{~m} / 2.52 \mathrm{~m}$	-0.04/-0.02
6	5.42 m	5.41 ddd (15.6, 9.1, 6.2)	-0.01
7	$5.72 \mathrm{dd}(15.5,10.5)$	5.71 dd (15.6, 10.7)	-0.01
8	6.06 t (11.0)	6.05 t (10.8)	-0.01
9	5.06 t (11.0)	5.05 t (10.9)	-0.01
10	3.11 m	3.10 m	-0.01
11	5.34 m	5.34 m	0
13	5.34 m	5.34 m	0
14	3.44 m	$3.42 \mathrm{dq}(9.7,6.8)$	-0.02
16	2.59 m	2.58 m	-0.01
17	4.12 m	4.11 m	-0.01
18	1.33 ddd (14.0, 9.0, 3.0)	1.32 ddd (14.0, 8.9, 2.8)	-0.01
	1.60 ddd (14.0, 10.5, 4.5)	1.60 ddd (14.1, 10.5, 4.9)	0
19	2.48 m	2.49 m	+0.01
20	$2.34 \mathrm{~m} / 2.76 \mathrm{~m}$	$2.34 \mathrm{~m} / 2.76 \mathrm{~m}$	0/0
22	0.92 d (6.5)	0.91 d (6.8)	-0.01
23	1.78 d (1.5)	1.77 d (1.3)	-0.01
24	1.19 d (7.0)	1.18 d (6.8)	-0.01
25	$2.32 \mathrm{~m} / 2.80 \mathrm{~m}$	$2.32 \mathrm{~m} / 2.78 \mathrm{~m}$	0/-0.02
NH	7.98 br s	7.99 brs	+0.01

[^2]Table S-2. Comparison of the recorded ${ }^{13} \mathrm{C}$ NMR data (δ in ppm, CDCl_{3}) of lactimidomycin (1) with those reported in the literature. ${ }^{5}$

Position	Literature (125 MHz)	Experimental (150 MHz)	$\mathbf{\Delta \delta} \boldsymbol{\delta}$
$\mathbf{1}$	166.7	166.7	0
$\mathbf{2}$	128.4	128.3	-0.1
$\mathbf{3}$	147.0	147.0	0
$\mathbf{4}$	32.4	32.4	0
$\mathbf{5}$	31.4	31.3	-0.1
$\mathbf{6}$	128.2	128.2	0
$\mathbf{7}$	134.6	134.5	-0.1
$\mathbf{8}$	129.6	129.5	-0.1
$\mathbf{9}$	131.1	131.2	+0.1
$\mathbf{1 0}$	36.1	36.0	-0.1
$\mathbf{1 1}$	82.5	82.4	-0.1
$\mathbf{1 2}$	134.1	134.0	-0.1
$\mathbf{1 3}$	129.1	129.0	-0.1
$\mathbf{1 4}$	46.8	46.7	-0.1
$\mathbf{1 5}$	212.5	212.5	0
$\mathbf{1 6}$	47.6	47.5	-0.1
$\mathbf{1 7}$	64.9	64.8	-0.1
$\mathbf{1 8}$	40.9	40.8	-0.1
$\mathbf{1 9}$	27.3	27.1	-0.2
$\mathbf{2 0}$	38.6	38.5	-0.1
$\mathbf{2 1}$	172.2	172.2	0
$\mathbf{2 2}$	17.7	17.6	-0.1
$\mathbf{2 3}$	15.4	15.4	0
$\mathbf{2 4}$	16.3	16.2	-0.1
$\mathbf{2 5}$	37.3	37.2	-0.1
$\mathbf{2 6}$	172.1	172.1	0

15-epi-Lactimidomycin (15-epi-1). Prepared analogously using ent-42 [prepared upon stirring of a solution of $\mathrm{PhBCl}_{2}(11 \mu \mathrm{~L}, 0.083 \mathrm{mmol})$ and N -tosyl- L-tryptophane ($30 \mathrm{mg}, 0.083 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$ for 1 h , followed by removal of the solvent $]^{3}$ as promoter for the Mukaiyama aldol reaction. White solid (7 mg, $18 \%, d r 85 / 15$). ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.92$ (br s, 1 H), 6.48 (ddd, $J=16.0,10.4,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.05$ (dd, $J=10.8,10.8 \mathrm{~Hz}, 1 \mathrm{H}$), 5.71 (dd, $J=15.6,10.7$ $\mathrm{Hz}, 1 \mathrm{H}), 5.54$ (d, $J=16.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.42$ (ddd, $J=15.4,9.2,6.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.36-5.32$ (m, 2H, overlap), $5.04(\mathrm{dd}, J=10.9,10.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.13-4.08(\mathrm{~m}, 1 \mathrm{H}), 3.42(\mathrm{dq}, J=9.9,6.7 \mathrm{~Hz}, 1 \mathrm{H})$,
3.14-3.06 (m, 1H), 2.81-2.72 (m, 2H), 2.66-2.62 (m, 2H), 2.59-2.54 (m, 1H), 2.54-2.46 (m, $2 \mathrm{H}), 2.37-2.27(\mathrm{~m}, 2 \mathrm{H}), 2.02-1.85(\mathrm{~m}, 2 \mathrm{H}), 1.77(\mathrm{~d}, J=1.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.61(\mathrm{ddd}, J=14.1,10.6$, $4.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.31(\mathrm{ddd}, J=14.0,8.9,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.18(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.91 \mathrm{ppm}(\mathrm{d}, J=$ $6.8 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=212.5(\mathrm{C}), 172.2(\mathrm{C}), 172.0(\mathrm{C}), 166.7(\mathrm{C})$, $147.0(\mathrm{CH}), 134.5(\mathrm{CH}), 134.0(\mathrm{C}), 131.2(\mathrm{CH}), 129.5(\mathrm{CH}), 129.0(\mathrm{CH}), 128.2(\mathrm{CH}), 128.2$ $(\mathrm{CH}), 82.4(\mathrm{CH}), 64.9(\mathrm{CH}), 47.4\left(\mathrm{CH}_{2}\right), 46.8(\mathrm{CH}), 40.8\left(\mathrm{CH}_{2}\right), 38.5\left(\mathrm{CH}_{2}\right), 37.2\left(\mathrm{CH}_{2}\right), 36.0$ $(\mathrm{CH}), 32.4\left(\mathrm{CH}_{2}\right), 31.3\left(\mathrm{CH}_{2}\right), 27.2(\mathrm{CH}), 17.6\left(\mathrm{CH}_{3}\right), 16.2\left(\mathrm{CH}_{3}\right), 15.4 \mathrm{ppm}\left(\mathrm{CH}_{3}\right)$; IR (film): 3422, 2929, 2856, 1698, 1454, 1376, 1265, 1190, 1143, 1087, 1024, 829, 795, 766, 734, 702 cm^{-1}; HRMS (ESI): $\mathrm{m} / \mathrm{z}:$ calcd for $\mathrm{C}_{26} \mathrm{H}_{35} \mathrm{NO}_{6} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 480.2357$; found 480.2358.

Compound 66. A solution of buffered $\mathrm{NaOCl}(0.55 \mathrm{M}, 50 \mathrm{~mL})$ was prepared by mixing 14
 mL of commercial bleach ${ }^{6}$ and $\mathrm{Na}_{2} \mathrm{HPO}_{4}(36 \mathrm{~mL}, 0.05 \mathrm{~m}$ in water). This solution was cooled to $4{ }^{\circ} \mathrm{C}$ before a solution of enyne 37 ($2.1 \mathrm{~g}, 3.9 \mathrm{mmol}$) and (R, R)-(-)-[1,2-cyclohexane-diamino- N, N^{\prime} '-bis(3,5-di-tert-butylsalicylidene] manganese chloride ($0.5 \mathrm{~g}, 0.78 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(25 \mathrm{~mL})$ was added. The resulting biphasic mixture was vigorously stirred at $4{ }^{\circ} \mathrm{C}$ for 20 h . It was then diluted with tert-butyl methyl ether and brine, the aqueous phase was extracted with tert-butyl methyl ether, and the combined extracts were dried over MgSO_{4} and evaporated. The residue was purified by flash chromatography (hexanes/EtOAc, 95/5 \rightarrow $90 / 10$) to give epoxide 66 as a yellow oil ($1.36 \mathrm{~g}, 63 \%$). The two diastereomers (at C3) are separable by flash chromatography (hexanes/EtOAc, 95/5). First diastereomer: ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.01(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.57(\mathrm{tt}, J=7.5,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.44(\mathrm{t}, J=7.7 \mathrm{~Hz}$, 2 H), 5.65 (dddd, $J=11.5,4.6,4.6,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.43(\mathrm{~d}, J=9.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.24(\mathrm{~d}, J=3.5 \mathrm{~Hz}$, $1 \mathrm{H}), 3.75(\mathrm{qd}, J=6.1,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.52-3.49(\mathrm{~m}, 1 \mathrm{H}), 3.15(\mathrm{dd}, J=17.0,11.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.97$ (dd, $J=17.1,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.88(\mathrm{dd}, J=9.9,3.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.56(\mathrm{dd}, J=17.7,11.6 \mathrm{~Hz}, 1 \mathrm{H})$, $2.48-2.37(\mathrm{~m}, 2 \mathrm{H}), 2.31-2.20(\mathrm{~m}, 1 \mathrm{H}), 2.13(\mathrm{ddq}, J=10.5,6.8,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.04-1.94(\mathrm{~m}$, $1 \mathrm{H}), 1.73(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.17(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.07(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.00-0.92(\mathrm{~m}$, $12 \mathrm{H}), 0.58 \mathrm{ppm}(\mathrm{q}, J=7.8 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=169.7(\mathrm{C}), 165.4(\mathrm{C})$, $134.4(\mathrm{CH}), 133.3(\mathrm{CH}), 130.4(\mathrm{C}), 129.7(\mathrm{CH}), 128.6(\mathrm{CH}), 128.5(\mathrm{C}), 86.8(\mathrm{C}), 81.0(\mathrm{CH})$, $77.5(\mathrm{C}), 71.6(\mathrm{CH}), 70.5(\mathrm{CH}), 60.3(\mathrm{CH}), 46.5(\mathrm{CH}), 39.8(\mathrm{CH}), 38.6(\mathrm{CH}), 37.3\left(\mathrm{CH}_{2}\right)$, $30.1\left(\mathrm{CH}_{2}\right)$, $21.5\left(\mathrm{CH}_{3}\right), 16.6\left(\mathrm{CH}_{3}\right), 15.3\left(\mathrm{CH}_{3}\right), 14.8\left(\mathrm{CH}_{3}\right), 13.0\left(\mathrm{CH}_{2}\right), 7.1\left(3 \mathrm{x} \mathrm{CH}_{3}\right), 5.2$ ppm ($3 \mathrm{xCH}_{2}$).

Second diastereomer: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=8.07(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.55(\mathrm{t}, J=$ $7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.43$ (t, $J=7.7 \mathrm{~Hz}, 2 \mathrm{H}$), $5.46-5.37$ (m, 1H, overlap), 5.43 (d, $J=10.1 \mathrm{~Hz}, 1 \mathrm{H}$, overlap), $5.25(\mathrm{~d}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.76(\mathrm{qd}, J=6.1,3.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.54-3.51(\mathrm{~m}, 1 \mathrm{H}), 3.08$ (dd, $J=17.2,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.97(\mathrm{dd}, J=17.1,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.88-2.80(\mathrm{~m}, 2 \mathrm{H}), 2.57-2.49(\mathrm{~m}$, $1 \mathrm{H}), 2.43$ (ddq, $J=10.0,6.5,3.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.30-2.21$ (m, 2H), 2.13 (dqd, $J=10.5,6.8,3.3$ $\mathrm{Hz}, 1 \mathrm{H}), 2.05-1.97(\mathrm{~m}, 1 \mathrm{H}), 1.75(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.20(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.06(\mathrm{~d}, J=$ $6.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.00-0.92(\mathrm{~m}, 12 \mathrm{H}), 0.58 \mathrm{ppm}(\mathrm{q}, J=7.8 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=168.7(\mathrm{C}), 166.0(\mathrm{C}), 134.0(\mathrm{CH}), 133.3(\mathrm{CH}), 130.4(\mathrm{C}), 129.9(\mathrm{CH}), 128.8(\mathrm{C}), 128.5$

[^3]$(\mathrm{CH}), 85.7(\mathrm{C}), 81.3(\mathrm{CH}), 77.4(\mathrm{C}), 71.6(\mathrm{CH}), 70.7(\mathrm{CH}), 60.4(\mathrm{CH}), 46.6(\mathrm{CH}), 39.8(\mathrm{CH})$, $38.9(\mathrm{CH}), 37.9\left(\mathrm{CH}_{2}\right), 30.5\left(\mathrm{CH}_{2}\right), 21.5\left(\mathrm{CH}_{3}\right), 16.6\left(\mathrm{CH}_{3}\right), 15.6\left(2 \times \mathrm{CH}_{3}\right), 14.7\left(\mathrm{CH}_{2}\right)$, $7.1(3$ x CH_{3}), $5.2 \mathrm{ppm}\left(3 \times \mathrm{CH}_{2}\right.$); IR (film): 2958, 2931, 2875, 1720, 1451, 1376, 1313, 1271, 1170, $1108,1068,1016,949,878,836,710 \mathrm{~cm}^{-1}$; MS (EI): m / z (\%): 510 (6), 304 (2), 207 (15), 159 (100), 131 (46), 115 (46), 105 (39), 87 (17); HRMS (ESI): $m / z:$ calcd for $\mathrm{C}_{32} \mathrm{H}_{46} \mathrm{O}_{6} \mathrm{SiNa}[\mathrm{M}+$ $\mathrm{Na}]^{+}: 577.2956$; found 577.2951.

Compound 67. p-Toluenesulfonic acid $(0.23 \mathrm{~g}, 1.23 \mathrm{mmol})$ was added to a solution of
 epoxide $66(1.36 \mathrm{~g}, 2.45 \mathrm{mmol})$ in $\mathrm{MeOH}(50 \mathrm{~mL})$ and the resulting mixture was stirred at $60^{\circ} \mathrm{C}$ for 6 h . The methanol was evaporated and the residue purified by flash chromatography (hexanes/EtOAc, 9/1 $\rightarrow 6 / 4$) to give diol 67 as a white solid $(0.85 \mathrm{~g}, 73 \%) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=8.03(\mathrm{~d}, J=$ $8.4 \mathrm{~Hz}, 2 \mathrm{H}, 1$ dia.), 8.00 (d, $J=8.3 \mathrm{~Hz}, 2 \mathrm{H}, 1$ dia.), $7.60-7.54$ ($\mathrm{m}, 2 \mathrm{H}, 2$ dia.), 7.48-7.41 (m, $4 \mathrm{H}, 2$ dia.), 5.70 (dddd, $J=11.1,8.6,2.6,2.6 \mathrm{~Hz}, 1 \mathrm{H}, 1$ dia.), 5.59 (dddd, $J=10.5,5.2,5.2,2.8 \mathrm{~Hz}, 1 \mathrm{H}, 1$ dia.), 5.27 (d, $J=2.5 \mathrm{~Hz}, 1 \mathrm{H}, 1$ dia.), 5.18-5.12 (m, 1 H, 1 dia., overlap), 5.18-5.12 (m, $2 \mathrm{H}, 2$ dia., overlap), 4.17 (d, $J=9.3 \mathrm{~Hz}, 1$ H, 1 dia.), 3.97 (dd, $J=9.9,2.3 \mathrm{~Hz}, 1 \mathrm{H}, 1$ dia.), 3.67-3.59 (m, $2 \mathrm{H}, 2$ dia.), 3.48-3.36 (m, 2 H, 2 dia., overlap), 3.45 (s, 3 H, 1 dia., overlap), 3.41 (s, 3 H, 1 dia., overlap), 3.14-2.96 (m, 2 H, 2 dia.), 2.58-2.45 (m, 4 H, 2 dia.), 2.45-2.33 (m, 4 H, 2 dia.), 2.33-2.22 (m, 4 H, 2 dia.), 2.13-1.99 (m, $2 \mathrm{H}, 2$ dia.), 1.91 (d, $J=1.0 \mathrm{~Hz}, 3 \mathrm{H}, 1$ dia.), 1.80 (d, $J=1.1 \mathrm{~Hz}, 3 \mathrm{H}, 1$ dia.), 1.19 (d, $J=6.3 \mathrm{~Hz}, 3 \mathrm{H}, 1$ dia.), 1.18 (d, $J=6.2 \mathrm{~Hz}, 3 \mathrm{H}, 1$ dia.), 0.96 (d, $J=7.2 \mathrm{~Hz}, 3 \mathrm{H}, 1$ dia., overlap), $0.95(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}, 1$ dia., overlap), $0.95 \mathrm{ppm}(\mathrm{d}, J=6.0 \mathrm{~Hz}, 3 \mathrm{H}, 1$ dia., overlap); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=169.6$ (C), 168.8 (C), 166.1 (C), 165.4 (C), 133.3 (CH), 133.3 (CH), 133.1 (C), 132.5 (C), 131.6 (CH), $131.3(\mathrm{CH}), 130.3(\mathrm{C}), 130.1(\mathrm{C}), 129.7$ $(\mathrm{CH}), 129.7(\mathrm{CH}), 128.6(\mathrm{CH}), 128.6(\mathrm{CH}), 88.2(\mathrm{C}), 87.7(\mathrm{C}), 80.6(\mathrm{CH}), 79.0(\mathrm{CH}), 77.4$ (C), $77.3(\mathrm{C}), 74.5(\mathrm{CH}), 73.6(\mathrm{CH}), 72.5(\mathrm{CH}), 72.1(\mathrm{CH}), 71.8(\mathrm{CH}), 71.2(\mathrm{CH}), 70.8(\mathrm{CH})$, $70.2(\mathrm{CH}), 57.1\left(\mathrm{CH}_{3}\right), 57.0\left(\mathrm{CH}_{3}\right), 40.9(\mathrm{CH}), 40.8\left(\mathrm{CH}_{2}\right), 40.6(\mathrm{CH}), 39.8(\mathrm{CH}), 38.1(\mathrm{CH})$, $37.0\left(\mathrm{CH}_{2}\right), 33.3\left(\mathrm{CH}_{2}\right), 30.5\left(\mathrm{CH}_{2}\right), 20.2\left(\mathrm{CH}_{3}\right), 20.1\left(\mathrm{CH}_{3}\right), 16.9\left(\mathrm{CH}_{3}\right), 16.8\left(\mathrm{CH}_{3}\right), 16.0$ $\left(\mathrm{CH}_{2}\right), 14.0\left(\mathrm{CH}_{3}\right), 13.8\left(\mathrm{CH}_{3}\right), 12.9\left(\mathrm{CH}_{2}\right), 10.9 \mathrm{ppm}\left(\mathrm{CH}_{3}, 2\right.$ dia.); IR (film): 3495, 2968, 2930, 2875, 1719, 1450, 1377, 1315, 1270, 1191, 1174, 1105, 1070, 1049, 1025, 984, 940, 881, 850, 735, $711 \mathrm{~cm}^{-1}$; HRMS (ESI): m/z: calcd for $\mathrm{C}_{27} \mathrm{H}_{36} \mathrm{O}_{7} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 495.2353$; found 495.2357.

Compound 68. Dess-Martin periodinane ($2.3 \mathrm{~g}, 5.4 \mathrm{mmol}$) was added to a solution of diol 67 $(850 \mathrm{mg}, 1.8 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$. The mixture
 was stirred at this temperature for 4 h before the reaction was quenched with a few drops of EtOH. The solvents were evaporated and the residue was purified by flash chromatography (hexanes/EtOAc, 9/1 $\rightarrow 7 / 3$), affording ketone 68 as a white solid ($740 \mathrm{mg}, 87 \%$). ${ }^{1} \mathrm{H}$ NMR (400 MHz , CDCl_{3}): $\delta=8.03$ (d, $J=8.2 \mathrm{~Hz}, 2 \mathrm{H}, 1$ dia.), $8.00(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}, 1$ dia.), 7.59-7.53 (m, 2 $\mathrm{H}, 2$ dia.), 7.47-7.40 (m, $4 \mathrm{H}, 2$ dia.), 5.68 (dddd, $J=10.7,7.6,3.2,3.2 \mathrm{~Hz}, 1 \mathrm{H}, 1$ dia.), 5.58 (dddd, $J=10.5,5.2,5.2,2.7 \mathrm{~Hz}, 1 \mathrm{H}, 1$ dia.), 5.28 (d, $J=8.6 \mathrm{~Hz}, 1 \mathrm{H}, 1$ dia.), 5.26 (d, $J=7.3$ $\mathrm{Hz}, 1 \mathrm{H}, 1$ dia.), 5.23 (d, $J=3.6 \mathrm{~Hz}, 1 \mathrm{H}, 1$ dia.), 5.16 (d, $J=4.2 \mathrm{~Hz}, 1 \mathrm{H}, 1$ dia.), 4.15 (d, $J=$
$8.8 \mathrm{~Hz}, 1 \mathrm{H}, 1$ dia.), 3.97 (dd, $J=9.8,2.5 \mathrm{~Hz}, 1 \mathrm{H}, 1$ dia.), 3.61 (d, $J=9.8 \mathrm{~Hz}, 1 \mathrm{H}, 1$ dia., overlap), 3.61 (d, $J=9.8 \mathrm{~Hz}, 1 \mathrm{H}, 1$ dia., overlap), 3.48-3.38 (m, $2 \mathrm{H}, 2$ dia., overlap), 3.46 (s, 3 H, 1 dia., overlap), 3.43 (s, 3 H, 1 dia., overlap), 3.12-2.98 (m, 2 H, 2 dia.), 2.60-2.45 ($\mathrm{m}, 4 \mathrm{H}, 2$ dia.), 2.45-2.33 (m, $2 \mathrm{H}, 2$ dia.), 2.33-2.21 (m, $2 \mathrm{H}, 2$ dia.), 2.13 ($\mathrm{s}, 3 \mathrm{H}, 1$ dia.), 2.11 (s, $3 \mathrm{H}, 1$ dia.), 2.08-1.95 (m, $2 \mathrm{H}, 2$ dia.), 1.92 (d, $J=1.0 \mathrm{~Hz}, 3 \mathrm{H}, 1$ dia.), 1.85 (d, $J=$ $1.1 \mathrm{~Hz}, 3 \mathrm{H}, 1$ dia.), 1.14 (d, $J=6.8 \mathrm{~Hz}, 3 \mathrm{H}, 1$ dia., overlap), 1.13 (d, $J=6.8 \mathrm{~Hz}, 3 \mathrm{H}, 1$ dia., overlap), 0.94 (d, $J=7.3 \mathrm{~Hz}, 3 \mathrm{H}, 1$ dia.), $0.92 \mathrm{ppm}\left(\mathrm{d}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}, 1\right.$ dia.); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=209.6$ (C), 209.5 (C), 169.4 (C), 168.5 (C), 166.0 (C), 165.4 (C), 134.1 (C), 133.7 (C), 133.3 (CH), 133.3 (CH), 130.2 (C), 130.1 (C), 129.7 (CH), 129.7 (CH), $128.5(\mathrm{CH}, 2$ dia.), $128.5(\mathrm{CH}), 128.3(\mathrm{CH}), 88.1(\mathrm{C}), 87.3(\mathrm{C}), 80.8(\mathrm{CH}), 80.5(\mathrm{CH}), 77.4$ (C, 2 dia.), $74.5(\mathrm{CH}), 74.0(\mathrm{CH}), 71.3(\mathrm{CH}), 70.7(\mathrm{CH}), 70.6(\mathrm{CH}), 70.3(\mathrm{CH}), 57.0\left(\mathrm{CH}_{3}\right)$, $57.0\left(\mathrm{CH}_{3}\right), 46.8(\mathrm{CH}), 46.8(\mathrm{CH}), 40.4\left(\mathrm{CH}_{2}\right), 39.4(\mathrm{CH}), 38.0(\mathrm{CH}), 37.1\left(\mathrm{CH}_{2}\right), 32.9\left(\mathrm{CH}_{2}\right)$, $30.6\left(\mathrm{CH}_{2}\right)$, $28.1\left(\mathrm{CH}_{3}, 2\right.$ dia. $), 16.1\left(\mathrm{CH}_{3}\right), 15.9\left(\mathrm{CH}_{3}\right), 15.9\left(\mathrm{CH}_{2}\right), 13.5\left(\mathrm{CH}_{3}\right), 13.4\left(\mathrm{CH}_{3}\right)$, $13.0\left(\mathrm{CH}_{2}\right), 10.8 \mathrm{ppm}\left(\mathrm{CH}_{3}, 2\right.$ dia.); IR (film): 3551, 2968, 2931, 2875, 1713, 1450, 1354, 1314, 1271, 1190, 1170, 1104, 1070, 1049, 1025, 983, 942, 884, 850, $711 \mathrm{~cm}^{-1} ;$ MS (EI): m / z (\%): 470 (<1) $[\mathrm{M}]^{+}, 399$ (3), 289 (38), 239 (12), 204 (7), 181 (14), 167 (25), 121 (13), 109 (29), 105 (100), 77 (21), 43 (21); HRMS (ESI): m/z: calcd for $\mathrm{C}_{27} \mathrm{H}_{34} \mathrm{O}_{7} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$: 493.2197; found 493.2195.

Compound 69: Triphenylstannane ($1.68 \mathrm{~g}, 4.8 \mathrm{mmol}$) and AIBN ($158 \mathrm{mg}, 1.0 \mathrm{mmol}$) were added to a carefully degassed solution of alkyne $\mathbf{6 8}(450 \mathrm{mg}, 1.0 \mathrm{mmol})$ in toluene (13 mL) and the resulting mixture was stirred at $80^{\circ} \mathrm{C}$ for 3 h . The mixture was concentrated under vacuum and the residue purified by flash chromatography
 (hexanes/EtOAc, 9/1 $\rightarrow 7 / 3$) to give the corresponding alkenylstannane as a white solid.

Iodine ($295 \mathrm{mg}, 1.2 \mathrm{mmol}$) was added to a solution of this compound in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(25 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. The resulting mixture was warmed to ambient temperature for 1 h before the solvent was evaporated and the residue purified by flash chromatography (hexanes/EtOAc, 8/2 \rightarrow $7 / 3$) to furnish the two diastereomers of iodoalkene 69. The fast eluting diastereomer (71 mg , 12%) and the slow eluting one ($186 \mathrm{mg}, 33 \%$) were both obtained as white solids. First diastereomer: $[\alpha]_{D}^{20}=+86.0\left(\mathrm{c}=1.0, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.05(\mathrm{~d}, J=$ $8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.58(\mathrm{tt}, J=7.4,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.45(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.49(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H})$, $5.54-5.45(\mathrm{~m}, 1 \mathrm{H}), 5.23(\mathrm{~d}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.20(\mathrm{~d}, J=3.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.97(\mathrm{~d}, J=9.0 \mathrm{~Hz}$, $1 \mathrm{H}), 3.72(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.46-3.37(\mathrm{~m}, 1 \mathrm{H}$, overlap), 3.38 ($\mathrm{s}, 3 \mathrm{H}$, overlap), 2.95 (dd, $J=$ $14.4,3.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.73(\mathrm{~s}, 1 \mathrm{H}), 2.55(\mathrm{dd}, J=14.4,10.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.41-2.22(\mathrm{~m}, 2 \mathrm{H}), 2.17-$ 2.09 (m, 1H, overlap), 2.14 (s, 3H, overlap), 2.09-1.99 (m, 1H), $1.90(\mathrm{~d}, J=1.3 \mathrm{~Hz}, 3 \mathrm{H})$, $1.86-1.72(\mathrm{~m}, 1 \mathrm{H}), 1.13(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 0.97 \mathrm{ppm}(\mathrm{d}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=209.6(\mathrm{C}), 168.1(\mathrm{C}), 166.3(\mathrm{C}), 138.5(\mathrm{CH}), 134.0(\mathrm{C}), 133.4(\mathrm{CH}), 130.1$ $(\mathrm{C}), 129.8(\mathrm{CH}), 128.6(\mathrm{CH}), 128.1(\mathrm{CH}), 90.0(\mathrm{CH}), 81.0(\mathrm{CH}), 73.9(\mathrm{CH}), 69.5(\mathrm{CH}), 56.9$ $\left(\mathrm{CH}_{3}\right), 46.8(\mathrm{CH}), 40.6\left(\mathrm{CH}_{2}\right), 39.0(\mathrm{CH}), 33.3\left(\mathrm{CH}_{2}\right), 30.7\left(\mathrm{CH}_{2}\right), 28.1\left(\mathrm{CH}_{3}\right), 15.9\left(\mathrm{CH}_{3}\right)$, $13.4\left(\mathrm{CH}_{3}\right), 10.8 \mathrm{ppm}\left(\mathrm{CH}_{3}\right)$; IR (film): 3515, 2969, 2936, 2875, 1725, 1703, 1449, 1356, 1314, 1248, 1190, 1172, 1146, 1095, 1064, 1043, 1025, 977, 905, 874, 845, $714 \mathrm{~cm}^{-1}$; MS (EI): m / z (\%): 527 (5), 471 (2), 429 (7), 295 (17), 210 (11), 181 (27), 169 (13), 151 (55), 121
(23), 109 (61), 105 (100), 77 (29), 43 (45); HRMS (ESI): m/z: calcd for $\mathrm{C}_{27} \mathrm{H}_{35} \mathrm{O}_{7} \mathrm{INa}[\mathrm{M}+$ $\mathrm{Na}]^{+}: 621.1320$; found 621.1321.
Second diastereomer: $[\alpha]_{D}^{20}=+62.5\left(\mathrm{c}=1.0, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.03$ (d, $J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.56(\mathrm{tt}, J=7.5,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.44(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 5.96(\mathrm{dd}, J=9.1$, $5.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.57-5.50(\mathrm{~m}, 1 \mathrm{H}), 5.29(\mathrm{~d}, J=9.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.09(\mathrm{~d}, J=3.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.86(\mathrm{~d}$, $J=9.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.41(\mathrm{qd}, J=9.6,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.34(\mathrm{~s}, 3 \mathrm{H}), 3.13(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.97$ (dd, $J=17.6,4.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.87(\mathrm{dd}, J=17.7,11.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.70(\mathrm{~s}, 1 \mathrm{H}), 2.38-2.21(\mathrm{~m}, 2 \mathrm{H})$, 2.17-2.08 (m, 1H, overlap), $2.11(\mathrm{~s}, 3 \mathrm{H}$, overlap), 2.08-2.01 (m, 2H), $1.85(\mathrm{~d}, J=1.3 \mathrm{~Hz}$, $3 \mathrm{H}), 1.13(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.95 \mathrm{ppm}(\mathrm{d}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=209.4$ (C), 169.0 (C), 165.4 (C), 140.7 (CH), 133.4 (C), 133.2 (CH), 130.3 (C), 129.7 $(\mathrm{CH}), 128.5(\mathrm{CH}), 128.5(\mathrm{CH}), 88.7(\mathrm{CH}), 80.9(\mathrm{CH}), 70.2(\mathrm{CH}), 69.4(\mathrm{CH}), 56.7\left(\mathrm{CH}_{3}\right), 46.7$ $(\mathrm{CH}), 38.3(\mathrm{CH}), 36.7\left(\mathrm{CH}_{2}\right), 30.0\left(\mathrm{CH}_{2}\right), 29.6\left(\mathrm{CH}_{2}\right), 28.1\left(\mathrm{CH}_{3}\right), 16.0\left(\mathrm{CH}_{3}\right), 13.8\left(\mathrm{CH}_{3}\right)$, $10.9 \mathrm{ppm}\left(\mathrm{CH}_{3}\right)$; IR (film): 3511, 2969, 2928, 2875, 1713, 1450, 1353, 1314, 1270, 1191, 1169, 1105, 1067, 1025, 981, 936, 852, $711 \mathrm{~cm}^{-1}$; MS (EI): m/z (\%): 527 (2), 471 (2), 429 (7), 295 (17), 210 (9), 181 (31), 169 (13), 151 (58), 121 (24), 109 (65), 105 (100), 77 (29), 43 (46); HRMS (ESI): $m / z:$ calcd for $\mathrm{C}_{27} \mathrm{H}_{35} \mathrm{O}_{7} \mathrm{INa}[\mathrm{M}+\mathrm{Na}]^{+}: 621.1320$; found 621.1324.

Compound 70. Triphenylstannane ($434 \mathrm{mg}, 1.24 \mathrm{mmol}$) and AIBN ($51 \mathrm{mg}, 0.31 \mathrm{mmol}$) were
 added to a carefully degassed solution of iodoalkene 69 (370 $\mathrm{mg}, 0.62 \mathrm{mmol}$) in toluene (15 mL) and the resulting mixture was stirred at $70^{\circ} \mathrm{C}$ for 2 h . The solvents were evaporated and the residue purified by flash chromatography (hexanes/EtOAc, $9 / 1 \rightarrow 7 / 3$) to give macrolactone 70 (300 mg , quant.) as a colorless oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=8.04(\mathrm{~d}, J=8.6$ $\mathrm{Hz}, 2 \mathrm{H}, 1$ dia.), 8.01 (d, $J=8.3 \mathrm{~Hz}, 2 \mathrm{H}, 1$ dia.), 7.59-7.53 (m, $2 \mathrm{H}, 2$ dia.), 7.47-7.39 (m, 4 H, 2 dia.), 5.80-5.67 (m, 2 H, 2 dia.), 5.56-5.49 (m, $2 \mathrm{H}, 2$ dia.), 5.47 (dd, $J=16.2,7.0 \mathrm{~Hz}, 1$ H, 1 dia.), 5.36 (dd, $J=15.9,7.3 \mathrm{~Hz}, 1 \mathrm{H}, 1$ dia.), 5.25 (d, $J=9.6 \mathrm{~Hz}, 1 \mathrm{H}, 1$ dia.), 5.23 (d, $J=9.6 \mathrm{~Hz}, 1 \mathrm{H}, 1$ dia.), 5.16 (d, $J=3.3 \mathrm{~Hz}, 1 \mathrm{H}, 1$ dia.), 5.02 (d, $J=3.8 \mathrm{~Hz}, 1 \mathrm{H}, 1$ dia.), 3.79 (dd, $J=9.3,0.9 \mathrm{~Hz}, 1 \mathrm{H}, 1$ dia.), 3.69 (dd, $J=9.5,3.2 \mathrm{~Hz}, 1 \mathrm{H}, 1$ dia.), 3.46-3.35 (m, $2 \mathrm{H}, 2$ dia.), 3.31 (s, $3 \mathrm{H}, 1$ dia.), 3.30 ($\mathrm{s}, 3 \mathrm{H}, 1$ dia.), $3.28-3.21$ (m, $2 \mathrm{H}, 2$ dia.), 3.00 ($\mathrm{s}, 1 \mathrm{H}, 1$ dia.), 2.96 (s, $1 \mathrm{H}, 1$ dia.), 2.93 (dd, $J=17.3,4.2 \mathrm{~Hz}, 1 \mathrm{H}, 1$ dia.), 2.87 (dd, $J=13.1,3.0 \mathrm{~Hz}$, $1 \mathrm{H}, 1$ dia.), 2.71 (dd, $J=17.2,11.4 \mathrm{~Hz}, 1 \mathrm{H}, 1$ dia.), 2.54 (dd, $J=13.1,10.6 \mathrm{~Hz}, 1 \mathrm{H}, 1$ dia.), 2.49-2.37 (m, 1 H, 1 dia.), 2.35-2.14 (m, $3 \mathrm{H}, 2$ dia.), 2.14-1.93 (m, 4 H, 2 dia., overlap), 2.14-1.93 (m, 1 H, 1 dia., overlap), 2.13 (s, $3 \mathrm{H}, 1$ dia., overlap), 2.10 (s, $3 \mathrm{H}, 1$ dia., overlap), $1.90(\mathrm{~d}, J=1.3 \mathrm{~Hz}, 3 \mathrm{H}, 1$ dia.), 1.81 (d, $J=1.3 \mathrm{~Hz}, 3 \mathrm{H}, 1$ dia.), $1.75-1.60$ ($\mathrm{m}, 1 \mathrm{H}, 1$ dia.), 1.12 (d, $J=6.8 \mathrm{~Hz}, 6 \mathrm{H}, 2$ dia.), 0.95 (d, $J=7.1 \mathrm{~Hz}, 3 \mathrm{H}, 1$ dia.), $0.93 \mathrm{ppm}(\mathrm{d}, J=7.1 \mathrm{~Hz}, 3$ $\mathrm{H}, 1$ dia.); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=209.7$ (C), 209.5 (C), 169.2 (C), 168.7 (C), 166.1 (C), $165.5(\mathrm{C}), 136.5(\mathrm{CH}), 136.4(\mathrm{CH}), 134.1(\mathrm{C}), 133.7(\mathrm{C}), 133.3(\mathrm{CH}), 133.2(\mathrm{CH}), 131.7$ $(\mathrm{CH}), 130.4(\mathrm{C}), 130.2(\mathrm{C}), 129.7(\mathrm{CH}), 129.6(\mathrm{CH}), 128.8(\mathrm{CH}), 128.5(\mathrm{CH}), 128.5(\mathrm{CH})$, $128.0(\mathrm{CH}, 2$ dia.), $83.4(\mathrm{CH}), 82.6(\mathrm{CH}), 80.7(\mathrm{CH}), 80.5(\mathrm{CH}), 71.3(\mathrm{CH}, 2$ dia.), $71.1(\mathrm{CH})$, $69.7(\mathrm{CH}), 56.7\left(\mathrm{CH}_{3}\right), 56.5\left(\mathrm{CH}_{3}\right), 46.8(\mathrm{CH}), 46.7(\mathrm{CH}), 40.9\left(\mathrm{CH}_{2}\right), 38.4(\mathrm{CH}), 37.5(\mathrm{CH})$, $37.4\left(\mathrm{CH}_{2}\right)$, $33.4\left(\mathrm{CH}_{2}\right)$, $30.2\left(\mathrm{CH}_{2}\right), 28.2\left(\mathrm{CH}_{3}\right)$, $28.1\left(\mathrm{CH}_{3}\right), 27.2\left(\mathrm{CH}_{2}\right), 26.4\left(\mathrm{CH}_{2}\right), 16.1$ $\left(\mathrm{CH}_{3}\right), 15.9\left(\mathrm{CH}_{3}\right), 13.7\left(\mathrm{CH}_{3}\right), 13.5\left(\mathrm{CH}_{3}\right), 11.2\left(\mathrm{CH}_{3}\right), 11.0 \mathrm{ppm}\left(\mathrm{CH}_{3}\right)$; IR (film): 3524, 2968, 2931, 2875, 1716, 1451, 1354, 1315, 1272, 1187, 1109, 1070, 1026, 982, 935, $713 \mathrm{~cm}^{-}$
${ }^{1}$; MS (EI): $m / z(\%): 472$ (<1) [M] ${ }^{+}, 401$ (2), 303 (6), 291 (29), 181 (10), 169 (100), 152 (33), 137 (22), 123 (12), 121 (11), 109 (47), 105 (59), 84 (51), 77 (13), 43 (22); HRMS (ESI): m/z: calcd for $\mathrm{C}_{27} \mathrm{H}_{36} \mathrm{O}_{7} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 495.2353$; found 495.2354.

Compound 73: $\mathrm{Me}_{3} \mathrm{SiCl}(110 \mu \mathrm{~L}, 0.85 \mathrm{mmol})$ and triethylamine ($120 \mu \mathrm{~L}, 0.85 \mathrm{mmol}$) were
 added to a solution of ketone $70(40 \mathrm{mg}, 0.085$ $\mathrm{mmol})$ in THF (2 mL) at $-78^{\circ} \mathrm{C}$ before LiHMDS (1 M in THF, $0.34 \mathrm{~mL}, 0.34 \mathrm{mmol}$) was slowly introduced and the resulting mixture stirred at $-78{ }^{\circ} \mathrm{C}$ for 1 h . The reaction was then quenched with pH 7 phosphate buffer and the product extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 2 \mathrm{~mL})$. The combined organic phases were dried over MgSO_{4} and evaporated to give the corresponding silyl enol ether, which was immediately used in the next step without further purification.
Molecular sieves ($4 \AA$, ca. 200 mg) and aldehyde 41b ($13 \mathrm{mg}, 0.085 \mathrm{mmol})^{2}$ were added to a solution of the crude silyl enol ether in propionitrile (1 mL). The mixture was cooled to $-78^{\circ} \mathrm{C}$ before a solution of compound $\mathbf{4 2}$ [prepared upon stirring of a solution of PhBCl_{2} (22 $\mu \mathrm{L}, 0.17 \mathrm{mmol}$) and N-tosyl-D-tryptophane ($61 \mathrm{mg}, 0.17 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$ for 1 h , followed by removal of the solvent] ${ }^{3}$ in propionitrile (0.3 mL) was added dropwise. After stirring for 20 h at $-78{ }^{\circ} \mathrm{C}$, the reaction was quenched with sat. aq. $\mathrm{NaHCO}_{3}(2 \mathrm{~mL})$, the aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 5 \mathrm{~mL})$, and the combined organic layers were dried over MgSO_{4} and evaporated. The resulting material was dissolved in THF (5 mL) at $0{ }^{\circ} \mathrm{C}$ and treated with 2.5 mL of a stock solution of buffered HF pyridine [prepared from THF $(7.25 \mathrm{~mL})$, pyridine (2.69 mL) and HF•pyridine complex ($0.54 \mathrm{~mL}, 70 \% \mathrm{w} / \mathrm{w}$)]. The mixture was stirred at $0^{\circ} \mathrm{C}$ for 30 min and then at ambient temperature for 4 h to complete the desilylation. Dilution with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$, washing of the organic layer with sat. aq. $\mathrm{NaHCO}_{3}(10 \mathrm{~mL})$ and aq. CuSO_{4} solution ($1 \mathrm{M}, 3 \times 10 \mathrm{~mL}$), drying over MgSO_{4} and evaporation of the solvents left a residue, which was purified by flash chromatography (EtOAc/hexanes, 80/20) to give product 73 as a white solid ($30 \mathrm{mg}, 57 \%$). ${ }^{1} \mathrm{H}$ NMR (400 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=8.18$ (br s, $1 \mathrm{H}, 1$ dia., overlap), 8.17 (br s, $1 \mathrm{H}, 1$ dia., overlap), 8.04 (d, $J=8.2 \mathrm{~Hz}, 2 \mathrm{H}, 1$ dia.), 8.00 (d, $J=8.3 \mathrm{~Hz}, 2 \mathrm{H}, 1$ dia.), 7.60-7.53 (m, $2 \mathrm{H}, 2$ dia.), 7.48-7.41 ($\mathrm{m}, 4 \mathrm{H}, 2$ dia.), 5.81-5.64 (m, 2 H, 2 dia.), 5.54-5.46 (m, 2 H, 2 dia., overlap), 5.49-5.42 (m, $1 \mathrm{H}, 1$ dia., overlap), 5.37 (dd, $J=15.9,7.3 \mathrm{~Hz}, 1 \mathrm{H}, 1$ dia.), 5.18-5.12 (m, $2 \mathrm{H}, 2$ dia., overlap), 5.18-5.12 (m, 1 H, 1 dia., overlap), 4.97 (d, $J=3.4 \mathrm{~Hz}, 1 \mathrm{H}, 1$ dia.), 4.11-4.01 (m, 2 $\mathrm{H}, 2$ dia.), 3.79 (dd, $J=9.3,0.9 \mathrm{~Hz}, 1 \mathrm{H}, 1$ dia.), 3.66 (dd, $J=9.4,3.6 \mathrm{~Hz}, 1 \mathrm{H}, 1$ dia.), 3.463.34 ($\mathrm{m}, 2 \mathrm{H}, 2$ dia.), 3.32 ($\mathrm{s}, 3 \mathrm{H}, 1$ dia.), 3.31 ($\mathrm{s}, 3 \mathrm{H}, 1$ dia.), 3.29-3.23 (m, $2 \mathrm{H}, 2$ dia.), 3.16 (s, $1 \mathrm{H}, 1$ dia.), 3.11 (s, $1 \mathrm{H}, 1$ dia.), 2.93 (dd, $J=17.2,3.9 \mathrm{~Hz}, 1 \mathrm{H}, 1$ dia.), 2.87 (dd, $J=$ 13.2, $3.0 \mathrm{~Hz}, 1 \mathrm{H}, 1$ dia.), 2.82-2.67 (m, $6 \mathrm{H}, 2$ dia.), 2.67-2.55 (m, $2 \mathrm{H}, 2$ dia.), 2.55-2.39 ($\mathrm{m}, 6 \mathrm{H}, 2$ dia.), 2.38-2.23 (m, 6 H, 2 dia.), 2.22-2.11 (m, 2 H, 2 dia.), 2.10-1.99 (m, 4 H, 2 dia.), 1.90 (d, $J=0.9 \mathrm{~Hz}, 3 \mathrm{H}, 1$ dia.), 1.79 (d, $J=1.0 \mathrm{~Hz}, 3 \mathrm{H}, 1$ dia.), $1.63-1.51$ (m, $2 \mathrm{H}, 2$ dia.), 1.42-1.33 (m, $2 \mathrm{H}, 2$ dia.), 1.13 (d, $J=6.8 \mathrm{~Hz}, 6 \mathrm{H}, 2$ dia.), 0.93 (d, $J=7.3 \mathrm{~Hz}, 3 \mathrm{H}, 1$ dia., overlap), $0.92 \mathrm{ppm}\left(\mathrm{d}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}, 1\right.$ dia., overlap); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=212.1$ (C), 211.9 (C), 172.5 (C), 172.5 (C), 172.4 (C), 172.4 (C), 169.3 (C), 168.7 (C), 166.2 (C), 165.6 (C), $136.7(\mathrm{CH}), 136.4$ (CH), 134.8 (C), 134.5 (C), 133.3 (CH), 133.2 (CH),
$131.7(\mathrm{CH}), 130.3$ (C), 130.1 (C), $129.8(\mathrm{CH}), 129.7(\mathrm{CH}), 128.8(\mathrm{CH}), 128.6(\mathrm{CH}), 128.5$ (CH), $126.8(\mathrm{CH}, 2$ dia.), $83.1(\mathrm{CH}), 82.4(\mathrm{CH}), 80.6(\mathrm{CH}), 80.0(\mathrm{CH}), 71.7(\mathrm{CH}), 71.4(\mathrm{CH})$, $71.4(\mathrm{CH}), 69.7(\mathrm{CH}), 65.1(\mathrm{CH}, 2$ dia. $), 56.7\left(\mathrm{CH}_{3}\right), 56.5\left(\mathrm{CH}_{3}\right), 47.5\left(\mathrm{CH}_{2}\right), 47.2\left(\mathrm{CH}_{2}\right), 46.7$ $(\mathrm{CH}), 46.7(\mathrm{CH}), 41.2\left(\mathrm{CH}_{2}\right), 41.1\left(\mathrm{CH}_{2}\right), 40.9\left(\mathrm{CH}_{2}\right), 38.6\left(\mathrm{CH}_{2}\right), 38.5\left(\mathrm{CH}_{2}\right), 38.4(\mathrm{CH})$, $37.7(\mathrm{CH}), 37.5\left(\mathrm{CH}_{2}\right), 37.4\left(\mathrm{CH}_{2}\right), 37.3\left(\mathrm{CH}_{2}\right), 37.3\left(\mathrm{CH}_{2}\right), 33.5\left(\mathrm{CH}_{2}\right), 27.3(\mathrm{CH}), 27.2$ $(\mathrm{CH}), 26.5\left(\mathrm{CH}_{2}, 2\right.$ dia. $), 15.8\left(\mathrm{CH}_{3}\right), 15.5\left(\mathrm{CH}_{3}\right), 14.0\left(\mathrm{CH}_{3}\right), 13.7\left(\mathrm{CH}_{3}\right), 11.3\left(\mathrm{CH}_{3}\right), 11.0$ ppm (CH_{3}); IR (film): 3469, 2968, 2930, 2875, 1697, 1450, 1374, 1314, 1260, 1190, 1150, 1106, 1069, 1025, 980, 932, 752, $712 \mathrm{~cm}^{-1}$; HRMS (ESI): m/z: calcd for $\mathrm{C}_{34} \mathrm{H}_{45} \mathrm{NO}_{10} \mathrm{Na}[\mathrm{M}+$ $\mathrm{Na}]^{+}: 650.2936$; found 650.2936 .

Compound 74. Imidazole ($53 \mathrm{mg}, 0.78 \mathrm{mmol}$) and resin-supported triphenylphosphine (3
 $\mathrm{mmol} / \mathrm{g}$ on polystyrene, $53 \mathrm{mg}, 0.16 \mathrm{mmol}$) were added to a solution of diol 73 (33 mg , $0.052 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. Next, iodine ($46 \mathrm{mg}, 0.18 \mathrm{mmol}$) was introduced and the resulting mixture stirred at ambient temperature for 1.5 h . The reaction was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ and the resin filtered off. The filtrate was extracted with pH 7 phosphate buffer and the aqueous phase extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$. The combined organic phases were dried over MgSO_{4} and evaporated. The residue was purified by flash chromatography (EtOAc/hexanes, $5 / 5 \rightarrow 2 / 8$) to give product 74 as a white solid ($19 \mathrm{mg}, 60 \%$). ${ }^{1} \mathrm{H}$ NMR (400 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=8.08-7.97$ ($\mathrm{m}, 6 \mathrm{H}, 2$ dia.), $7.60-7.53$ (m, $2 \mathrm{H}, 2$ dia.), 7.48-7.41 (m, 4 H , 2 dia.), 6.79-6.68 (m, $2 \mathrm{H}, 2$ dia.), 6.31 (d, $J=15.4 \mathrm{~Hz}, 1 \mathrm{H}, 1$ dia.), 6.22 (d, $J=15.6 \mathrm{~Hz}, 1$ H, 1 dia.), 5.81-5.67 (m, 2 H, 2 dia.), 5.55-5.46 (m, 2 H, 2 dia., overlap), 5.50-5.43 (m, 1 H, 1 dia., overlap), 5.38 (dd, $J=15.9,7.2 \mathrm{~Hz}, 1 \mathrm{H}, 1$ dia.), 5.18 (d, $J=9.7 \mathrm{~Hz}, 2 \mathrm{H}, 2$ dia.), 5.15 (d, $J=3.3 \mathrm{~Hz}, 1 \mathrm{H}, 1$ dia.), $4.98(\mathrm{~d}, J=3.7 \mathrm{~Hz}, 1 \mathrm{H}, 1$ dia.), $3.81(\mathrm{dd}, J=9.3,1.1 \mathrm{~Hz}, 1 \mathrm{H}, 1$ dia.), 3.67 (dd, $J=9.4,3.6 \mathrm{~Hz}, 1 \mathrm{H}, 1$ dia.), 3.58-3.47 (m, $2 \mathrm{H}, 2$ dia.), 3.33 (s, $3 \mathrm{H}, 1$ dia., overlap), 3.31 (s, $3 \mathrm{H}, 1$ dia., overlap), 3.31-3.22 (m, $2 \mathrm{H}, 2$ dia., overlap), 2.92 (dd, $J=17.2$, $3.9 \mathrm{~Hz}, 1 \mathrm{H}, 1$ dia.), 2.87 (dd, $J=13.0,2.7 \mathrm{~Hz}, 1 \mathrm{H}, 1$ dia.), 2.75-2.64 (m, $6 \mathrm{H}, 2$ dia.), 2.54 (dd, $J=13.3,10.7 \mathrm{~Hz}, 1 \mathrm{H}, 1$ dia.), 2.49-2.38 (m, $2 \mathrm{H}, 2$ dia.), 2.38-2.22 (m, $12 \mathrm{H}, 2$ dia.), 2.21-2.12 (m, $2 \mathrm{H}, 2$ dia.), 2.10-1.96 (m, $5 \mathrm{H}, 2$ dia.), 1.93 ($\mathrm{d}, J=1.0 \mathrm{~Hz}, 3 \mathrm{H}, 1$ dia.), 1.82 (d, $J=1.0 \mathrm{~Hz}, 3 \mathrm{H}, 1$ dia.), 1.15 (d, $J=6.8 \mathrm{~Hz}, 6 \mathrm{H}, 2$ dia.), 0.90 (d, $J=7.3 \mathrm{~Hz}, 3 \mathrm{H}, 1$ dia., overlap), $0.83 \mathrm{ppm}\left(\mathrm{d}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}, 1\right.$ dia., overlap); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=$ 199.8 (C), 199.6 (C), 171.7 (C, 2 dia.), 171.7 (C, 2 dia.), 169.3 (C), 169.2 (C), 165.6 (C, 2 dia.), $141.6(\mathrm{CH}), 141.3(\mathrm{CH}), 136.7(\mathrm{CH}), 136.5(\mathrm{CH}), 134.3(\mathrm{C}), 133.9(\mathrm{C}), 133.3(\mathrm{CH})$, $133.2(\mathrm{CH}), 131.4(\mathrm{CH}), 131.1(\mathrm{CH}), 130.4(\mathrm{C}, 2$ dia.), $129.8(\mathrm{CH}), 129.7(\mathrm{CH}), 129.0(\mathrm{CH})$, $128.8(\mathrm{CH}), 128.6(\mathrm{CH}), 128.5(\mathrm{CH}), 127.5(\mathrm{CH}, 2$ dia. $), 83.2(\mathrm{CH}), 82.6(\mathrm{CH}), 80.3(\mathrm{CH}, 2$ dia.), $71.7\left(\mathrm{CH}, 2\right.$ dia.), $71.4(\mathrm{CH}, 2$ dia. $), 56.7\left(\mathrm{CH}_{3}\right), 56.5\left(\mathrm{CH}_{3}\right), 44.9\left(\mathrm{CH}_{2}, 2\right.$ dia. $), 44.8$ $(\mathrm{CH}), 44.8(\mathrm{CH}), 37.7\left(\mathrm{CH}_{2}, 2\right.$ dia. $), 37.6\left(\mathrm{CH}_{2}, 2\right.$ dia.), $37.5(\mathrm{CH}, 2$ dia. $), 37.3\left(\mathrm{CH}_{2}, 2\right.$ dia. $)$, $30.5\left(\mathrm{CH}_{2}, 2\right.$ dia. $), 29.8(\mathrm{CH}), 29.8(\mathrm{CH}), 26.6\left(\mathrm{CH}_{2}\right), 22.7\left(\mathrm{CH}_{2}\right), 15.8\left(\mathrm{CH}_{3}, 2\right.$ dia. $), 13.9$ $\left(\mathrm{CH}_{3}, 2\right.$ dia. $), 11.3 \mathrm{ppm}\left(\mathrm{CH}_{3}, 2\right.$ dia. $)$; IR (film): 3493, 3226, 2968, 2926, 2875, 1695, 1627, $1450,1374,1315,1268,1191,1150,1107,1069,1043,1025,979,931,804,712 \mathrm{~cm}^{-1}$; HRMS (ESI): m / z : calcd for $\mathrm{C}_{34} \mathrm{H}_{43} \mathrm{NO}_{9} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 632.2830$; found 632.2829.

Compound 76. A solution of the copper complex 75 (1 M in toluene, $1.8 \mathrm{~mL}, 1.8 \mathrm{mmol}$) was
 added to enone 74 ($11 \mathrm{mg}, 0.018 \mathrm{mmol}$). The solvent was slowly evaporated by a stream of argon until a precipitate formed. After stirring for 14 h at ambient temperature, the mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and the solvents were evaporated. The residue was purified by flash chromatography (EtOAc/hexanes, $15 / 85 \rightarrow 70 / 30$) to give product 76 as a white solid (6.5 $\mathrm{mg}, 59 \%$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=8.06-8.00(\mathrm{~m}, 4 \mathrm{H}, 2$ dia.) 7.85 (br s, $1 \mathrm{H}, 1$ dia), 7.81 (br s, 1 H, 1 dia), 7.60-7.59 (m, 2 H, 2 dia.) 7.48-7.42 (m, 4 H, 2 dia.), 5.79-5.69 (m, 2 H, 2 dia.), 5.54-5.48 (m, $2 \mathrm{H}, 2$ dia., overlap), 5.47 (dd, $J=15.7,6.8 \mathrm{~Hz}, 1 \mathrm{H}, 1$ dia,overlap), 5.38 (dd, $J=16.0,7.3 \mathrm{~Hz}, 1 \mathrm{H}, 1$ dia,overlap), 5.18 (d, $J=9.8 \mathrm{~Hz}, 2 \mathrm{H}, 2$ dia.), 5.14 (d, $J=$ $3.2 \mathrm{~Hz}, 1 \mathrm{H}, 1$ dia.), 4.98 (d, $J=3.8 \mathrm{~Hz}, 1 \mathrm{H}, 1$ dia.), 3.79 (d, $J=9.0 \mathrm{~Hz}, 1 \mathrm{H}, 1$ dia.), 3.66 (dd, $J=9.4,3.6 \mathrm{~Hz}, 1 \mathrm{H}, 1$ dia.), 3.46-3.36 (m, $2 \mathrm{H}, 2$ dia.), 3.33 (s, $3 \mathrm{H}, 1$ dia., overlap), 3.31 (s, 3 H, 1 dia., overlap), 3.33-3.34 (m, 2 H, 2 dia., overlap), 3.06 (s, 1 H, 1 dia.), 2.96 (s, 1 H, 1 dia.), 2.92 (dd, $J=17.3,4.0 \mathrm{~Hz}, 1 \mathrm{H}, 1$ dia.), 2.87 (dd, $J=13.3,3.0 \mathrm{~Hz}, 1 \mathrm{H}, 1$ dia), 2.742.66 (m, 4 H, 2 dia., overlap), 2.68 (dd, $J=16.8,4.2 \mathrm{~Hz}, 1 \mathrm{H}, 1$ dia, overlap), 2.63-2.57 (m, 1 H, 1 dia., overlap), 2.61-2.43 (m, 4 H, 2 dia., overlap), 2.47-2.31 (m, 4 H, 2 dia., overlap), 2.33-2.20 (m, 4 H, 2 dia., overlap), 2.18-2.09 (m, 2 H, 2 dia., overlap), 2.16-2.00 (m, 2 H, 2 dia., overlap), 2.15-1.93 (m, $4 \mathrm{H}, 2$ dia., overlap), 1.90 (d, $J=1.2 \mathrm{~Hz}, 3 \mathrm{H}, 1$ dia.), 1.81 (d, $J=1.2 \mathrm{~Hz}, 3 \mathrm{H}, 1$ dia.), 1.61-1.54 (m, $4 \mathrm{H}, 2$ dia.), 1.38-1.32 (m, $4 \mathrm{H}, 2$ dia.), 1.12 (d, $J=6.6$ $\mathrm{Hz}, 3 \mathrm{H}, 1$ dia., overlap), $1.12 \mathrm{ppm}(\mathrm{d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}, 1$ dia., overlap), 0.91 (d, $J=7.2 \mathrm{~Hz}, 6$ $\mathrm{H}, 2$ dia.) ${ }^{13}{ }^{3} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=210.8$ (C), 210.7 (C), 172.2 (C, 2 dia.), 172.2 (C, 2 dia.), 169.3 (C), 168.7 (C), 166.2 (C), 165.6 (C), 136.6 (CH), 134.4 (CH), 134.1 (C), 133.7 (C), 133.3, (CH), $133.2(\mathrm{CH}), 131.7(\mathrm{CH}), 130.4(\mathrm{C}), 130.2(\mathrm{C}), 129.8(\mathrm{CH}), 129.7(\mathrm{CH})$, $128.8(\mathrm{CH}), 128.6(\mathrm{CH}), 128.5(\mathrm{CH}), 128.1(\mathrm{CH}), 127.7(\mathrm{CH}), 83.2(\mathrm{CH}), 82.5(\mathrm{CH}), 80.8$ $(\mathrm{CH}), 80.2(\mathrm{CH}), 71.6(\mathrm{CH}), 71.4(\mathrm{CH}, 2$ dia. $), 69.7(\mathrm{CH}), 56.7\left(\mathrm{CH}_{3}\right), 56.5\left(\mathrm{CH}_{3}\right), 46.2(\mathrm{CH}$, 2 dia.), $41.0\left(\mathrm{CH}_{2}\right), 40.1\left(\mathrm{CH}_{2}\right), 38.4(\mathrm{CH}), 37.9(\mathrm{CH}), 37.9\left(\mathrm{CH}_{2}, 2\right.$ dia. $), 37.7\left(\mathrm{CH}_{2}\right), 37.6$ $\left(\mathrm{CH}_{2}\right), 34.3\left(\mathrm{CH}_{2}, 2\right.$ dia. $)$, $30.5\left(\mathrm{CH}_{2}, 2\right.$ dia. $), 30.4\left(\mathrm{CH}_{2}\right), 30.3\left(\mathrm{CH}_{2}\right), 27.3\left(\mathrm{CH}_{2}\right), 26.6\left(\mathrm{CH}_{2}\right)$, $20.4\left(\mathrm{CH}_{2}, 2\right.$ dia. $)$, $16.1\left(\mathrm{CH}_{3}\right), 15.9\left(\mathrm{CH}_{3}\right), 13.9\left(\mathrm{CH}_{3}\right), 13.5\left(\mathrm{CH}_{3}\right), 11.3\left(\mathrm{CH}_{3}\right), 11.0 \mathrm{ppm}$ $\left(\mathrm{CH}_{3}\right)$; IR (film): 3522, 3230, 2931, 1704, 1601, 1450, 1372, 1314, 1270, 1191, 1150, 1108, $1069,1044,1026,982,932,851,804,713 \mathrm{~cm}^{-1}$; HRMS (ESI): m/z: calcd for $\mathrm{C}_{34} \mathrm{H}_{45} \mathrm{NO}_{9} \mathrm{Na}$ $[\mathrm{M}+\mathrm{Na}]^{+}:$634.2987; found 634.2988.

Compound 77: $\mathrm{NaBH}_{4}(2.5 \mathrm{mg}, 0.065 \mathrm{mmol})$ was added to a solution of ketone $76(8.0 \mathrm{mg}$, $0.013 \mathrm{mmol})$ in THF $(0.5 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$. After stirring
 for 1 h at this temperature, a second portion of $\mathrm{NaBH}_{4}(2.5 \mathrm{mg}, 0.065 \mathrm{mmol})$ was introduced and stirring continued at ambient temperature for 2 h . The reaction was quenched with sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}$ and diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and the combined organic phases were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated.

DBU ($30 \mu \mathrm{~L}, 0.20 \mathrm{mmol}$) was added to a solution of the crude alcohol in THF (0.6 mL). The resulting mixture was stirred at ambient temperature for 18 h before the solvents were
evaporated and the residue was purified by flash chromatography (hexanes/EtOAc, 80/20 \rightarrow $25 / 75$) to give product 77 as a white solid ($4.7 \mathrm{mg}, 73 \%$ over two steps). ${ }^{1} \mathrm{H}$ NMR (400 MHz , CDCl_{3}): $\delta=7.79$ (br s, $2 \mathrm{H}, 2$ dia.), 6.69 (dt, $J=16.1,8.1 \mathrm{~Hz}, 2 \mathrm{H}, 2$ dia.), 5.72 (d, $J=16.1$ $\mathrm{Hz}, 1 \mathrm{H}, 1$ dia.), 5.70 (d, $J=15.9 \mathrm{~Hz}, 1 \mathrm{H}, 1$ dia.), $5.66-5.58$ ($\mathrm{m}, 2 \mathrm{H}, 2$ dia.), 5.24 (d, $J=3.2$ $\mathrm{Hz}, 1 \mathrm{H}, 1$ dia.), 5.21 (d, $J=3.6 \mathrm{~Hz}, 1 \mathrm{H}, 1$ dia.), 5.15-5.09 (m, $2 \mathrm{H}, 2$ dia., overlap), 5.115.03 (m, 2 H, 2 dia., overlap), 3.75 (d, $J=9.0 \mathrm{~Hz}, 1 \mathrm{H}, 1$ dia.), 3.75 (d, $J=9.2 \mathrm{~Hz}, 1 \mathrm{H}, 1$ dia.), 3.47-3.43 (m, 3 H, 2 dia.), 3.32 (s, $3 \mathrm{H}, 1$ dia.), 3.29 ($\mathrm{s}, 3 \mathrm{H}, 1$ dia.), 3.22-3.19 (m, 3 H , 2 dia.), 3.12 ($\mathrm{s}, 1 \mathrm{H}, 1$ dia.), 2.99 ($\mathrm{s}, 1 \mathrm{H}, 1$ dia.), 2.79-2.68 (m, $5 \mathrm{H}, 2$ dia., overlap), 2.72 (dd, $J=16.7,3.8 \mathrm{~Hz}, 2 \mathrm{H}, 2$ dia.), 2.67-2.60 (m, $2 \mathrm{H}, 2$ dia.), 2.48-2.40 (m, $2 \mathrm{H}, 2$ dia., overlap), 2.46-2.39 (m, 1 H, 1 dia., overlap), 2.31-2.18 (m, 4 H, 2 dia., overlap), 2.20-2.12 (m, 1 H, 1 dia., overlap), 2.18-2.10 (m, $2 \mathrm{H}, 2$ dia., overlap), 1.97 (dtd, $J=11.9,11.9,4.6 \mathrm{~Hz}, 2 \mathrm{H}, 2$ dia.), 1.87-1.80 (m, 1 H, 1 dia., overlap), 1.86 (s, $6 \mathrm{H}, 2$ dia., overlap), 1.65-1.52 (m, $4 \mathrm{H}, 2$ dia.), 1.47-1.34 (m, 6 H, 2 dia.), 1.34-1.21 (m, $2 \mathrm{H}, 2$ dia.), 0.99 (d, $J=6.8 \mathrm{~Hz}, 3 \mathrm{H}, 1$ dia.), 0.94 (d, $J=6.6 \mathrm{~Hz}, 3 \mathrm{H}, 1$ dia.), 0.94 (d, $J=7.2 \mathrm{~Hz}, 3 \mathrm{H}, 1$ dia.), $0.91 \mathrm{ppm}(\mathrm{d}, J=7.4 \mathrm{~Hz}, 3$ $\mathrm{H}, 1$ dia.); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=172.3$ (C, 2 dia.), 172.3 (C, 2 dia.), 168.3 (C), 168.1 (C), 151.0 (CH), 150.9 (CH), 133.7 (C), 133.6 (C), 130.8 (CH), 130.3 (CH), 130.1 $(\mathrm{CH}), 129.6(\mathrm{CH}), 129.5(\mathrm{CH}), 129.4(\mathrm{CH}), 125.2(\mathrm{CH}), 125.1(\mathrm{CH}), 82.6(\mathrm{CH}), 82.2(\mathrm{CH})$, $81.6(\mathrm{CH}), 81.3(\mathrm{CH}), 76.1(\mathrm{CH}), 75.9(\mathrm{CH}), 74.3(\mathrm{CH}), 74.1(\mathrm{CH}), 57.2\left(\mathrm{CH}_{3}, 2\right.$ dia.), 39.2 $(\mathrm{CH}), 38.5(\mathrm{CH}), 38.3(\mathrm{CH}), 38.1(\mathrm{CH}), 38.0\left(\mathrm{CH}_{2}, 2\right.$ dia. $), 38.0\left(\mathrm{CH}_{2}, 2\right.$ dia.), $35.2\left(\mathrm{CH}_{2}\right)$, $34.9\left(\mathrm{CH}_{2}\right), 33.8\left(\mathrm{CH}_{2}\right), 33.1\left(\mathrm{CH}_{2}\right), 33.1\left(\mathrm{CH}_{2}\right), 32.5\left(\mathrm{CH}_{2}\right), 30.6(\mathrm{CH}), 30.3\left(\mathrm{CH}_{2}\right), 30.0$ $(\mathrm{CH}), 30.0\left(\mathrm{CH}_{2}\right), 23.2\left(\mathrm{CH}_{2}\right), 22.8\left(\mathrm{CH}_{2}\right), 16.8\left(\mathrm{CH}_{3}\right), 16.7\left(\mathrm{CH}_{3}\right), 13.9\left(\mathrm{CH}_{3}\right), 13.7\left(\mathrm{CH}_{3}\right)$, $10.8\left(\mathrm{CH}_{3}\right), 10.8 \mathrm{ppm}\left(\mathrm{CH}_{3}\right)$; IR (film): 3458, 3221, 2930, 2857, 1695, 1645, 1438, 1378, $1325,1249,1188,1146,1102,1034,995,974,922,874,849,831,749,721,695,665 \mathrm{~cm}^{-1}$; HRMS (ESI): $m / z:$ calcd for $\mathrm{C}_{27} \mathrm{H}_{41} \mathrm{NO}_{7} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 514.2775$; found 514.2781.

Isomigrastatin (2). Dess-Martin periodinane ($10 \mathrm{~g}, 0.024 \mathrm{mmol}$) was added to a solution of
 alcohol $77(4.0 \mathrm{mg}, 0.008 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.5 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. After stirring for 1 h at this temperature, a few drops of EtOH were added and the solvents evaporated. The residue was purified by flash chromatography (hexanes/EtOAc, $5 / 5 \rightarrow 4 / 6$), to afford product $\mathbf{2}$ as a white solid ($2.5 \mathrm{mg}, 64 \%$). $[\alpha]_{D}^{20}=+182^{\circ}\left(c=0.21, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.74(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 6.65(\mathrm{ddd}, J=16.0,9.0,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.68(\mathrm{~d}, J=$ $16.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.59$ (ddd, $J=15.8,11.0,4.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.21-5.18$ (m, 2H), 5.09 (dd, $J=15.8$, $3.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.74(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.48-3.41(\mathrm{~m}, 2 \mathrm{H}), 3.33(\mathrm{~s}, 3 \mathrm{H}), 2.84(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 2.70$ (dd, $J=17.3,4.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.65-2.59(\mathrm{~m}, 2 \mathrm{H}), 2.45$ (dddd, $J=11.6,7.6,3.9,3.9 \mathrm{~Hz}, 1 \mathrm{H})$, $2.38(\mathrm{dt}, J=17.9,6.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.24(\mathrm{ddd}, J=17.3,10.6,2.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.19-2.09(\mathrm{~m}, 2 \mathrm{H})$, $1.95(\mathrm{qd}, J=12.2,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.90(\mathrm{~d}, J=1.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.87-1.82(\mathrm{~m}, 1 \mathrm{H}), 1.61-1.56(\mathrm{~m}$, $2 \mathrm{H}), 1.39-1.33(\mathrm{~m}, 2 \mathrm{H}), 1.13(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.84 \mathrm{ppm}(\mathrm{d}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=210.9(\mathrm{C}), 172.2(\mathrm{C}), 167.8(\mathrm{C}), 150.8(\mathrm{CH}), 134.2(\mathrm{C}), 130.4(\mathrm{CH})$, $129.2(\mathrm{CH}), 128.1(\mathrm{CH}), 125.1(\mathrm{CH}), 82.3(\mathrm{CH}), 81.7(\mathrm{CH}), 73.3(\mathrm{CH}), 57.2\left(\mathrm{CH}_{3}\right), 46.1$ $(\mathrm{CH}), 40.1\left(\mathrm{CH}_{2}\right), 38.2(\mathrm{CH}), 37.9\left(\mathrm{CH}_{2}\right), 37.9\left(\mathrm{CH}_{2}\right), 34.3\left(\mathrm{CH}_{2}\right), 32.9\left(\mathrm{CH}_{2}\right), 30.3(\mathrm{CH})$, $30.2\left(\mathrm{CH}_{2}\right), 20.4\left(\mathrm{CH}_{2}\right), 15.9\left(\mathrm{CH}_{3}\right), 13.4\left(\mathrm{CH}_{3}\right), 10.7 \mathrm{ppm}\left(\mathrm{CH}_{3}\right)$; IR (film): 3500, 3223, 2961, 2929, 1698, 1443, 1405, 1359, 1325, 1259, 1187, 1147, 1100, 1034, 995, 974, 941, 922,

872, 800, 734, 694, $675 \mathrm{~cm}^{-1}$; HRMS (ESI): m/z: calcd for $\mathrm{C}_{27} \mathrm{H}_{39} \mathrm{NO}_{7} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$: 512.2619; found: 512.2622.

Table S-3. Comparison of the recorded ${ }^{1} \mathrm{H}$ NMR data $\left(\mathrm{CDCl}_{3}\right)$ of isomigrastatin (2) with those reported in literature; ${ }^{7}$ numbering scheme as shown in the Insert.

Position	Literature ($\mathbf{5 0 0} \mathbf{~ M H z}$) $\boldsymbol{\delta}$ (ppm) mult. (J in Hz)	Experimental (600 MHz) δ (ppm) mult. (J in Hz)	$\Delta \delta$
2	5.68 d (16.0)	5.68 d (16.0)	0
3	6.65 ddd (16.0, 9.1, 7.2)	6.65 ddd (16.0, 9.0, 7.1)	0
4	2.46 m	2.45 dddd (11.6, 7.6, 3.9, 3.9)	-0.1
	2.15 m	2.14 m	-0.1
5	2.62 m	2.62 m	0
	1.96 qd (12.0, 4.7)	$1.95 \mathrm{qd}(12.2,4.5)$	-0.1
6	5.60 ddd (15.7, 10.9, 4.7)	5.59 ddd (15.8, 11.0, 4.7)	-0.1
7	5.10 dd (15.7, 3.9)	$5.09 \mathrm{dd}(15.8,3.7)$	-0.1
8	3.46 m	3.45 m	-0.1
9	3.74 d (9.2)	3.74 d (9.2)	0
10	1.86 m	1.85 m	-0.1
11	5.20 m	5.19 m	-0.1
13	5.20 m	5.19 m	-0.1
14	3.46 m	3.45 m	-0.1
16	2.62 m	2.62 m	0
	$2.39 \mathrm{dt}(17.9,6.9)$	$2.38 \mathrm{dt}(17.9,6.9)$	-0.1
17	1.59 m	1.59 m	0
18	1.36 m	1.36 m	0
19	2.15 m	2.14 m	-0.1
20	2.70 dd (17.0, 4.0)	2.70 dd (17.3, 4.1)	0
	? dd (17.0, 10.8)	2.24 ddd (17.3, 10.6, 2.9)	?
22	3.33 s	3.33 s	0
23	0.84 d (7.2)	0.84 d (7.1)	0
24	1.91 d (1.2)	1.90 d (1.1)	-0.1
25	1.14 d (6.7)	1.13 d (6.8)	-0.1
26	2.70 dd (17.3, 4.1)	2.70 dd (17.3, 4.1)	0
	2.24 ddd (17.3, 10.6, 2.9)	2.24 ddd (17.3, 10.6, 2.9)	?

[^4]| $\mathbf{N H}$ | 7.71 br s | 7.74 br s | +0.3 |
| :--- | :---: | :---: | :---: |
| $\mathbf{O H}$ | 2.84 br s | 2.84 br s | 0 |
| | | | |

Table S-4. Comparison of the recorded ${ }^{13} \mathrm{C}$ NMR data (δ in $\mathrm{ppm}, \mathrm{CDCl}_{3}$) of isomigrastatin (2) with those reported in the literature. ${ }^{7}$

Position	Literature (125 MHz)	Experimental (150 MHz)	$\mathbf{\Delta \delta}$
$\mathbf{1}$	167.8	167.8	0
$\mathbf{2}$	125.2	125.1	-0.1
$\mathbf{3}$	150.8	150.8	0
$\mathbf{4}$	30.3	30.2	-0.1
$\mathbf{5}$	32.9	32.9	0
$\mathbf{6}$	129.3	129.2	-0.1
$\mathbf{7}$	130.5	130.4	-0.1
$\mathbf{8}$	81.8	81.7	-0.1
$\mathbf{9}$	73.4	73.3	-0.1
$\mathbf{1 0}$	38.3	38.2	-0.1
$\mathbf{1 1}$	82.4	82.3	-0.1
$\mathbf{1 2}$	134.3	134.2	-0.1
$\mathbf{1 3}$	128.2	128.1	-0.1
$\mathbf{1 4}$	46.2	46.1	-0.1
$\mathbf{1 5}$	211.0	210.9	-0.1
$\mathbf{1 6}$	40.2	40.1	-0.1
$\mathbf{1 7}$	20.5	20.4	-0.1
$\mathbf{1 8}$	34.4	34.3	-0.1
$\mathbf{1 9}$	30.4	30.3	-0.1
$\mathbf{2 0}$	37.9	37.9	0
$\mathbf{2 1}$	172.2	172.2	0
$\mathbf{2 2}$	57.3	57.2	-0.1
$\mathbf{2 3}$	10.7	10.7	0
$\mathbf{2 4}$	13.5	13.4	-0.1
$\mathbf{2 5}$	15.9	15.9	0
$\mathbf{2 6}$	38.0	37.9	-0.1
$\mathbf{2 7}$	172.2	172.2	0

Compound 44. Catecholborane ($26 \mu \mathrm{~L}, 0.24 \mathrm{mmol}$) was added to a solution of compound $\mathbf{1}$
 $(11.2 \mathrm{mg}, 0.024 \mathrm{mmol})$ in THF $(0.8 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$. The mixture was warmed to $-5^{\circ} \mathrm{C}$ and stirred for 2 h at this temperature before the mixture was diluted with pH 7 phophate buffer and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and the combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated. The residue was purified by flash chromatography (hexanes/EtOAc, $5 / 5 \rightarrow 0 / 1$) to give syn-diol 44 as a white solid (6.4 mg , $58 \%) .[\alpha]_{D}^{20}=-1.9^{\circ}\left(c=0.31, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.76(\mathrm{~s}, 1 \mathrm{H}), 6.45$ (ddd, $J=16.1,10.2,5.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.03(\mathrm{t}, J=10.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.70(\mathrm{dd}, J=10.7,15.6 \mathrm{~Hz}, 1 \mathrm{H})$, 5.53 (d, $J=16.7 \mathrm{~Hz} .1 \mathrm{H}), 5.40(\mathrm{ddd}, J=15.6,9.0,6.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.32(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.28$ (d, $J=9.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.06(\mathrm{t}, J=10.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.96-3.91(\mathrm{~m}, 1 \mathrm{H}), 3.91(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 3.67-3.63$ $(\mathrm{m}, 1 \mathrm{H}), 3.13-3.07(\mathrm{~m}, 1 \mathrm{H}), 2.79(\mathrm{dd}, J=17.1,4.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.74(\mathrm{dd}, J=17.1,4.2 \mathrm{~Hz}, 1 \mathrm{H})$, $2.58-2.54(\mathrm{~m}, 1 \mathrm{H}), 2.54-2.45(\mathrm{~m}, 3 \mathrm{H}), 2.32$ (dd, $J=17.1,10.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.31$ (dd, $J=17.1$, $10.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.15(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 1.99-1.88(\mathrm{~m}, 2 \mathrm{H}), 1.71(\mathrm{~d}, J=1.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.64-1.59(\mathrm{~m}, 2 \mathrm{H})$, 1.47 (ddd, $J=14.3,10.7,9.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.37$ (ddd, $J=13.8,9.1,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 0.96$ (d, $J=6.8$ $\mathrm{Hz}, 3 \mathrm{H}$), $0.91 \mathrm{ppm}(\mathrm{d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=172.3$ (C), 172.3 (C), $166.8(\mathrm{C}), 146.8(\mathrm{CH}), 134.6(\mathrm{CH}), 133.6(\mathrm{C}), 131.8(\mathrm{CH}), 131.4(\mathrm{CH}), 129.4(\mathrm{CH})$, $128.4(\mathrm{CH}), 128.1(\mathrm{CH}), 82.9(\mathrm{CH}), 69.3(\mathrm{CH}), 69.1(\mathrm{CH}), 42.4\left(\mathrm{CH}_{2}\right), 40.7\left(\mathrm{CH}_{2}\right), 39.8$ $(\mathrm{CH}), 38.7\left(\mathrm{CH}_{2}\right), 37.3\left(\mathrm{CH}_{2}\right), 35.7(\mathrm{CH}), 32.4\left(\mathrm{CH}_{2}\right), 31.3\left(\mathrm{CH}_{2}\right), 27.0(\mathrm{CH}), 17.8\left(\mathrm{CH}_{3}\right)$, $16.6\left(\mathrm{CH}_{3}\right), 15.5 \mathrm{ppm}\left(\mathrm{CH}_{3}\right)$; IR (film): 3268, 2970, 1720, 1693, 1454, 1365, 1261, 1178, 1151, 1068, 1035, 962, 926, 847, 770, $724 \mathrm{~cm}^{-1}$; HRMS (ESI): m/z: calcd for $\mathrm{C}_{26} \mathrm{H}_{37} \mathrm{NO}_{6} \mathrm{Na}$ [$\mathrm{M}+\mathrm{Na}]^{+}: 482.2513$; found: 482.2514 .

Compound 45. A solution of $\mathrm{MsCl}\left(63 \mu \mathrm{~L}, 0.2 \mathrm{M}\right.$ in $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ and triethylamine ($7.6 \mu \mathrm{~L}$, 0.055 mmol) was added to a solution of compound $\mathbf{1}$
 $(5.0 \mathrm{mg}, 0.011 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.2 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$. After stirring for 2 h at this temperature, pH 7 phophate buffer and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ were added, the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and the combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated. The residue was purified by flash chromatography (hexanes/EtOAc, 50/50 \rightarrow $30 / 70$) to give enone $\mathbf{4 5}$ as a white solid ($3.5 \mathrm{mg}, 72 \%$). $[\alpha]_{D}^{20}=+41.5^{\circ}\left(c=0.35, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.88(\mathrm{~s}, 1 \mathrm{H}), 6.78(\mathrm{dt}, J=15.0,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.47$ (ddd, $J=$ $16.0,10.5,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.24(\mathrm{~d}, J=15.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.04(\mathrm{t}, J=10.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.71(\mathrm{dd}, J=$ $10.0,15.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.54(\mathrm{~s}, J=16.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.41$ (ddd, $J=15.5,9.2,6.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.37$ (d, $J=9.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.34(\mathrm{~d}, J=4.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.05(\mathrm{t}, J=10.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.57-3.51(\mathrm{~m}, 1 \mathrm{H}), 3.12-$ 3.05 (m, 1H), 2.71 (d, $J=13.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.59-2.54(\mathrm{~m}, 1 \mathrm{H}), 2.54-2.49(\mathrm{~m}, 1 \mathrm{H}), 2.38-2.27$ (m, $5 \mathrm{H}), 1.99-1.87(\mathrm{~m}, 2 \mathrm{H}), 1.77(\mathrm{~d}, J=1.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.20(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.88 \mathrm{ppm}(\mathrm{d}, J=$ $7.0 \mathrm{~Hz}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=199.3$ (C), 171.3 (C), 171.2 (C), 166.7 (C), $146.8(\mathrm{CH}), 141.9(\mathrm{CH}), 134.6(\mathrm{CH}), 133.6(\mathrm{C}), 131.5(\mathrm{CH}), 130.8(\mathrm{CH}), 129.4(\mathrm{CH}), 129.3$ $(\mathrm{CH}), 128.3(\mathrm{CH}), 128.1(\mathrm{CH}), 82.7(\mathrm{CH}), 45.1(\mathrm{CH}), 37.5\left(\mathrm{CH}_{2}\right), 37.5\left(\mathrm{CH}_{2}\right), 37.4\left(\mathrm{CH}_{2}\right)$, $36.0(\mathrm{CH})$, $32.4\left(\mathrm{CH}_{2}\right), 31.3\left(\mathrm{CH}_{2}\right)$, $29.8(\mathrm{CH})$, $17.5\left(\mathrm{CH}_{3}\right), 16.3\left(\mathrm{CH}_{3}\right)$, $15.3 \mathrm{ppm}\left(\mathrm{CH}_{3}\right)$; IR (film): 3241, 2962, 2931, 1694, 1626, 1451, 1374, 1259, 1189, 1144, 1087, 988, 915, 798, $727 \mathrm{~cm}^{-1}$; HRMS (ESI): m / z : calcd for $\mathrm{C}_{26} \mathrm{H}_{33} \mathrm{NO}_{5} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 462.2251$; found: 462.2254.

Compound 46. Acid 41a ($11 \mathrm{mg}, 0.064 \mathrm{mmol}$), DMAP ($8 \mathrm{mg}, 0.064 \mathrm{mmol}$) and EDCI (12
 $\mathrm{mg}, 0.064 \mathrm{mmol}$) were successively added to solution of alcohol $39(15 \mathrm{mg}, 0.049 \mathrm{mmol})$ in THF $(0.5 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. After stirring for 2 h at ambient temperature, the reaction was quenched with pH 7 phophate buffer and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and the combined organic phases were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated. The residue was purified by flash chromatography (hexanes/EtOAc, 85/15 $\rightarrow 70 / 30$) to give ester 46 as a white solid (9 $\mathrm{mg}, 55 \% \mathrm{brsm}) \cdot[\alpha]_{D}^{20}=-47^{\circ}(c=1.0, \mathrm{THF}) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.89(\mathrm{~s}, 1 \mathrm{H})$, 6.47 (ddd, $J=16.0,10.4,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.04(\mathrm{t}, J=10.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.73(\mathrm{dd}, J=15.6,10.7 \mathrm{~Hz}$, $1 \mathrm{H}), 5.54(\mathrm{~d}, J=16.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.41$ (ddd, $J=15.5,9.1,6.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.32(\mathrm{~d}, J=4.9 \mathrm{~Hz}$, $1 \mathrm{H}), 5.29(\mathrm{~d}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.09(\mathrm{t}, J=10.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.92-4.86(\mathrm{~m}, 1 \mathrm{H}), 3.11-3.05(\mathrm{~m}$, $1 \mathrm{H}), 2.78(\mathrm{dd}, J=17.3,4.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.69-2.59(\mathrm{~m}, 2 \mathrm{H}), 2.58-2.49(\mathrm{~m}, 2 \mathrm{H}), 2.42-2.33(\mathrm{~m}$, $4 \mathrm{H}), 2.01-1.87(\mathrm{~m}, 2 \mathrm{H}), 1.71 .(\mathrm{d}, J=1.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.19(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}), 0.98(\mathrm{~d}, J=6.8$ $\mathrm{Hz}, 3 \mathrm{H}), 0.91 \mathrm{ppm}(\mathrm{d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=170.7$ (C), 170.7 (C), 169.8 (C), 166.4 (C), $146.2(\mathrm{CH}), 134.1(\mathrm{CH}), 131.6(\mathrm{CH}), 131.4$ (C), 131.3 (CH), 128.7 $(\mathrm{CH}), 127.9(\mathrm{CH}), 127.5(\mathrm{CH}), 82.8(\mathrm{CH}), 74.3(\mathrm{CH}), 38.6\left(\mathrm{CH}_{2}\right), 36.9\left(\mathrm{CH}_{2}\right), 36.9\left(\mathrm{CH}_{2}\right)$, $36.5(\mathrm{CH}), 35.3(\mathrm{CH}), 31.9\left(\mathrm{CH}_{2}\right), 30.9\left(\mathrm{CH}_{2}\right), 26.8(\mathrm{CH}), 17.1\left(\mathrm{CH}_{3}\right), 17.0\left(\mathrm{CH}_{3}\right), 15.8$ $\left(\mathrm{CH}_{3}\right), 14.3 \mathrm{ppm}\left(\mathrm{CH}_{3}\right)$; IR (film): 3224, 2964, 2932, 2875, 1699, 1642, 1452, 1377, 1327, 1289, 1259, 1189, 1142, 1087, 1067, 998, 957, 912, 848, 828, 795, 766, $728 \mathrm{~cm}^{-1}$; HRMS (ESI): m / z : calcd for $\mathrm{C}_{26} \mathrm{H}_{35} \mathrm{NO}_{6} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 480.2357$; found: 480.2362 .

Compound 47. Dess-Martin periodinane ($61 \mathrm{mg}, 0.14 \mathrm{mmol}$) was added to solution of alcohol $23(36 \mathrm{mg}, 0.12 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$. After
 stirring for 1 h at ambient temperature, the solvent was evaporated and the residue purified by flash chromatography (hexanes/EtOAc, 95/5) to give ketone 47 as a yellowish solid ($32 \mathrm{mg}, 89 \%$). M.p. $75-76{ }^{\circ} \mathrm{C}$; $[\alpha]_{D}^{20}=+113^{\circ}\left(c=1.0, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=$ 6.18-6.05 (m, 2H), $5.69(\mathrm{dt}, J=15.2,5.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.20(\mathrm{~d}, J=10.4$ $\mathrm{Hz}, 1 \mathrm{H}), 5.08(\mathrm{~d}, J=5.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.98(\mathrm{t}, J=9.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.36-3.29(\mathrm{~m}, 2 \mathrm{H}), 2.32-2.20(\mathrm{~m}$, $3 \mathrm{H}), 2.06(\mathrm{~s}, 3 \mathrm{H}), 1.99-1.89(\mathrm{~m}, 2 \mathrm{H}), 1.85-1.76(\mathrm{~m}, 1 \mathrm{H}), 1.64(\mathrm{~d}, J=1.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.54-1.42$ $(\mathrm{m}, 2 \mathrm{H}), 1.07(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.88 \mathrm{ppm}(\mathrm{d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , CDCl_{3}): $\delta=208.7(\mathrm{C}), 172.6(\mathrm{C}), 133.8(\mathrm{C}), 131.2(\mathrm{CH}), 130.5(\mathrm{CH}), 130.0(\mathrm{CH}), 129.5$ $(\mathrm{CH}), 126.1(\mathrm{CH}), 82.1(\mathrm{CH}), 46.5(\mathrm{CH}), 33.4(\mathrm{CH}), 32.8\left(\mathrm{CH}_{2}\right), 29.9\left(\mathrm{CH}_{2}\right), 27.6\left(\mathrm{CH}_{3}\right), 23.5$ $\left(\mathrm{CH}_{2}\right)$, $22.6\left(\mathrm{CH}_{2}\right), 17.2\left(\mathrm{CH}_{3}\right), 15.8\left(\mathrm{CH}_{3}\right), 14.3 \mathrm{ppm}\left(\mathrm{CH}_{3}\right)$;); IR (film): 2970, 2932, 2878, 1726,1706, 1451, 1417, 1375, 1353, 1334, 1254, 1196, 1158, 1142, 1074, 1053, 1002, 967, 909, 967, 881, 831, 795, $760 \mathrm{~cm}^{-1}$; MS (EI): m/z (\%): 304 (4) [M+], 165 (12), 164 (100), 149 (7), 136 (19), 135 (18), 123 (7), 121 (22), 120 (61), 108 (5), 107 (22), 120 (61), 108 (5), 107 (22), 105 (10), 95 (9), 94 (23), 93 (18), 92 (5), 91 (13), 82 (5), 81 (14), 80 (7), 79 (31), 77 (11), 69 (6), 68 (27), 67 (15), 55 (12), 53 (7), 43 (28), 41 (19), 29 (6); HRMS (ESI): m/z: calcd for $\mathrm{C}_{19} \mathrm{H}_{28} \mathrm{O}_{3}[\mathrm{M}]^{+}: 304.2038$; found: 304.2040.

Compound 48. $\mathrm{Me}_{3} \mathrm{SiCl}(58 \mu \mathrm{~L}, 0.45 \mathrm{mmol})$ and triethylamine ($63 \mu \mathrm{~L}, 0.45 \mathrm{mmol}$) were added to a solution of ketone 47 ($13.6 \mathrm{mg}, 0.045$
 $\mathrm{mmol})$ in THF (1.6 mL) at $-78^{\circ} \mathrm{C}$. Next, LiHMDS (1 M in THF, $90 \mu \mathrm{~L}, 0.090 \mathrm{mmol}$) was slowly introduced and the resulting mixture stirred at $78^{\circ} \mathrm{C}$ for 1 h . The reaction was then quenched with pH 7 phosphate buffer and the product extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (3 x 2 mL). The combined organic phases were dried over MgSO_{4} and evaporated to give the corresponding silyl enol ether, which was used in the next step without further purification.

Molecular sieves ($4 \AA$, ca. 150 mg) and aldehyde $\mathbf{4 1 b}(7.0 \mathrm{mg}, 0.045 \mathrm{mmol})$ were added to a solution of the crude silyl enol ether in propionitrile (0.8 mL). The mixture was cooled to $-78{ }^{\circ} \mathrm{C}$ before a solution of compound $\mathbf{4 2}$ [prepared upon stirring of a solution of PhBCl_{2} (6 $\mu \mathrm{L}, 0.045 \mathrm{mmol}$) and N -tosyl-D-tryptophane ($16.1 \mathrm{mg}, 0.045 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.4 \mathrm{~mL})$ for 1 h , followed by removal of the solvent ${ }^{3}$ in propionitrile (0.3 mL) was slowly added. After stirring for 35 h at $-78^{\circ} \mathrm{C}$, the reaction was quenched with sat. aq. NaHCO_{3}, the aqueous phase extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 2 \mathrm{~mL})$, and the combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated. The resulting material was dissolved in THF (8 mL) at $0{ }^{\circ} \mathrm{C}$ and treated with 0.85 mL of buffered HF-pyridine solution [prepared from THF (7.25 mL), pyridine (2.69 mL) and HF-pyridine complex ($0.59 \mathrm{~mL}, 70 \% \mathrm{w} / \mathrm{w}$)]. The mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 2 h and warmed to ambient temperature for 30 min to complete the desilylation. Dilution with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(25 \mathrm{~mL})$, washing of the organic layer with sat. aq. $\mathrm{NaHCO}_{3}(15 \mathrm{~mL})$ and CuSO_{4} solution ($1 \mathrm{M}, 3 \times 15 \mathrm{~mL}$), drying over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporation of the solvents left a residue, which was purified by preparative TLC ($\mathrm{EtOAc} /$ hexanes, $4 / 1$) to give product 48 as a white solid $(6.3 \mathrm{mg}, 31 \%) .[\alpha]_{D}^{20}=+73^{\circ}\left(c=0.21, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \mathrm{NMR}(600 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta=7.81(\mathrm{~s}, 1 \mathrm{H}), 6.11-6.02(\mathrm{~m}, 2 \mathrm{H}), 5.66(\mathrm{dt}, J=15.2,5.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.13(\mathrm{~d}, J=9.6$ $\mathrm{Hz}, 1 \mathrm{H}), 5.03(\mathrm{~d}, J=5.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.91(\mathrm{t}, J=9.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.02-3.96(\mathrm{~m}, 1 \mathrm{H}), 3.31-3.24(\mathrm{~m}$, 2 H), 3.13 (br s, 1 H), 2.69-2.63 (m, 2H), $2.45(\mathrm{~d}, J=5.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.42-2.36(\mathrm{~m}, 1 \mathrm{H}), 2.26-$ $2.15(\mathrm{~m}, 5 \mathrm{H}), 1.93-1.86(\mathrm{~m}, 2 \mathrm{H}), 1.79-1.73(\mathrm{~m}, 1 \mathrm{H}), 1.59(\mathrm{~d}, J=1.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.52-1.40(\mathrm{~m}$, $3 \mathrm{H}), 1.23-1.17(\mathrm{~m}, 1 \mathrm{H}), 1.04(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.83 \mathrm{ppm}(\mathrm{d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=212.3$ (C), 173.0 (C), 172.0 (C), 171.8 (C), 134.8 (C), 131.7 (CH), $130.5(\mathrm{CH}), 130.5(\mathrm{CH}), 128.9(\mathrm{CH}), 126.3(\mathrm{CH}), 82.1(\mathrm{CH}), 64.6(\mathrm{CH}), 47.3\left(\mathrm{CH}_{2}\right), 46.5$ $(\mathrm{CH}), 40.6\left(\mathrm{CH}_{2}\right), 38.4\left(\mathrm{CH}_{2}\right), 37.0\left(\mathrm{CH}_{2}\right), 33.6(\mathrm{CH}), 33.0\left(\mathrm{CH}_{2}\right), 30.2\left(\mathrm{CH}_{2}\right), 27.0(\mathrm{CH})$, $23.9\left(\mathrm{CH}_{2}\right), 22.8\left(\mathrm{CH}_{2}\right), 17.6\left(\mathrm{CH}_{3}\right), 16.0\left(\mathrm{CH}_{3}\right), 14.9 \mathrm{ppm}\left(\mathrm{CH}_{3}\right)$; IR (film): 3451, 3223, 2927, 1698, 1454, 1375, 1258, 1200, 1145, 1074, 1013, 994, 970, 872, 829, $789 \mathrm{~cm}^{-1}$; MS (EI): m / z (\%): 459 (0.16) [M+], 165 (13), 164 (100), 149 (7), 146 (5), 136 (22), 135 (17), 121 (19), 120 (49), 107 (19), 105 (9), 96 (8), 95 (6), 94 (19), 93 (16), 91 (11), 82 (5), 81 (14), 80 (6), 79 (26), 77 (7), 69 (7), 68 (20), 67 (13), 55 (14), 53 (5), 43 (12), 41 (19), 29 (5); HRMS (ESI): $m / z:$ calcd for $\mathrm{C}_{26} \mathrm{H}_{37} \mathrm{NO}_{6} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 482.2513$; found: 482.2511.

Compound S5. The Pt-catalyst $49(15 \mathrm{mg}, 0.022 \mathrm{mmol})$ and $\mathrm{BnMe}_{2} \mathrm{SiH}(0.35 \mathrm{~mL}, 2.23$ mmol) were dissolved in THF (1.5 mL) and heated to $60^{\circ} \mathrm{C}$ for 3 h prior to addition of cycloalkyne $37(240 \mathrm{mg}, 0.445 \mathrm{mmol})$ as a solution in THF (2 mL). The mixture was stirred for 14 h at $60^{\circ} \mathrm{C}$. The solvent was evaporated and the residue purified by flash
chromatography (hexanes/EtOAc, $98 / 2 \rightarrow 96 / 4$) to give the alkenylsilane 50, which was directly used in the next step.

A solution of TBAF (1 m in THF, $1.78 \mathrm{~mL}, 1.78 \mathrm{mmol}$) was added at $0^{\circ} \mathrm{C}$ to a solution of alkenylsilane $\mathbf{5 0}$ in THF (0.5 mL) and the resulting mixture was stirred at ambient temperature for 1 h . For work up, the solvent was evaporated and the residue purified by flash chromatography (hexanes/EtOAc, $85 / 15 \rightarrow 75 / 25$) to give (Z, Z)alkene $\mathbf{S 5}$ as a colorless oil, which contained small impurites of (Z, E)-alkene ($111 \mathrm{mg}, 82 \%) .[\alpha]_{D}^{20}=-60^{\circ}\left(c=0.82, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $\delta=6.86(\mathrm{ddd}, J=15.7,12.2,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.16(\mathrm{t}, J=9.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.10(\mathrm{t}, J=9.4 \mathrm{~Hz}, 1 \mathrm{H})$, $5.56(\mathrm{~d}, J=15.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.42-5.29(\mathrm{~m}, 4 \mathrm{H}), 3.60(\mathrm{qd}, J=6.3,6.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.92-2.83(\mathrm{~m}$, $1 \mathrm{H}), 2.60-2.26(\mathrm{~m}, 1 \mathrm{H}), 2.50-2.40(\mathrm{~m}, 2 \mathrm{H}), 2.25-2.21(\mathrm{~m}, 1 \mathrm{H}), 2.10(\mathrm{qd}, J=12.3,3.9 \mathrm{~Hz}$, $1 \mathrm{H}), 1.79(\mathrm{~d}, J=1.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.61(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 1.19(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.00(\mathrm{~d}, J=6.8 \mathrm{~Hz}$, $3 \mathrm{H}), 0.91 \mathrm{ppm}(\mathrm{d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=166.6(\mathrm{C}), 151.6(\mathrm{CH})$, $134.0(\mathrm{CH}), 132.7(\mathrm{CH}), 132.3(\mathrm{C}), 131.2(\mathrm{CH}), 127.8(\mathrm{CH}), 126.9(\mathrm{CH}), 123.9(\mathrm{CH}), 82.6$ $(\mathrm{CH}), 71.7(\mathrm{CH}), 40.4(\mathrm{CH}), 37.0(\mathrm{CH}), 32.6\left(\mathrm{CH}_{2}\right), 26.8\left(\mathrm{CH}_{2}\right), 20.4\left(\mathrm{CH}_{3}\right), 16.8\left(\mathrm{CH}_{3}\right), 16.7$ $\left(\mathrm{CH}_{3}\right), 15.5 \mathrm{ppm}\left(\mathrm{CH}_{3}\right)$; IR (film): 3466, 2967, 2928, 2872, 1708, 1451, 1376, 1319, 1247, 1199, 1154, 1081, 997, 919, 851, 829, 731 cm^{-1}; MS (EI): m/z (\%): 162 (30), 133 (10), 95 (8), 94 (100), 93 (6), 91 (5), 79 (51), 77 (6), 68 (13), 41 (5); HRMS (ESI): m/z: calcd for $\mathrm{C}_{19} \mathrm{H}_{28} \mathrm{O}_{3} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 327.1931$; found: 327.1929.

Compound 51. Dess-Martin periodinane ($75 \mathrm{mg}, 0.18 \mathrm{mmol}$) was added to a solution of
 alcohol S5 ($30 \mathrm{mg}, 0.410 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3.5 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. After stirring for 4 h at ambient temperature the solvent was evaporated and the residue was purified by flash chromatography (hexanes/EtOAc, 90/10) to give ketone 51 as a colorless oil that contained small impurites of the (Z, E)-isomer ($23 \mathrm{mg}, 77 \%) .[\alpha]_{D}^{20}=+143^{\circ}(c=0.89$, CHCl_{3}); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=6.86$ (ddd, $J=15.6,12.1$, $3.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.15(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.11(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.54(\mathrm{dd}, J=15.6,1.4 \mathrm{~Hz}, 1 \mathrm{H})$, $5.41-5.29(\mathrm{~m}, 4 \mathrm{H}), 3.44(\mathrm{dq}, J=9.6,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.88(\mathrm{dqd}, J=12.2,6.4,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.60-$ $2.56(\mathrm{~m}, 1 \mathrm{H}), 2.44(\mathrm{qd}, J=12.1,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.26-2.19(\mathrm{~m}, 1 \mathrm{H}), 2.13(\mathrm{~s}, 3 \mathrm{H}), 2.11-2.08(\mathrm{~m}$, $1 \mathrm{H}), 1.84(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.18(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.89 \mathrm{ppm}(\mathrm{d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=208.8(\mathrm{C}), 165.9(\mathrm{C}), 151.5(\mathrm{CH}), 133.2(\mathrm{CH}), 133.1(\mathrm{CH})$, $130.9(\mathrm{CH}), 129.1(\mathrm{C}), 127.3(\mathrm{CH}), 126.6(\mathrm{CH}), 123.3(\mathrm{CH}), 81.6(\mathrm{CH}), 46.6(\mathrm{CH}), 36.9$ $(\mathrm{CH}), 32.1\left(\mathrm{CH}_{2}\right), 27.6\left(\mathrm{CH}_{3}\right), 26.3\left(\mathrm{CH}_{2}\right), 16.2\left(\mathrm{CH}_{3}\right), 15.9\left(\mathrm{CH}_{3}\right), 15.0 \mathrm{ppm}\left(\mathrm{CH}_{3}\right)$; IR (film): 2968, 2930, 1707, 1452, 1353, 1318, 1245, 1181, 1150, 999, 828, $731 \mathrm{~cm}^{-1}$; MS (EI): m / z (\%): 162 (33), 133 (11), 95 (8), 94 (100), 93 (5), 79 (52), 77 (6), 68 (12), 43 (7); HRMS (ESI): $m / z:$ calcd for $\mathrm{C}_{19} \mathrm{H}_{26} \mathrm{O}_{3} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 325.1774$; found: 325.1775.

Compound 52: $\mathrm{Me}_{3} \mathrm{SiCl}(88 \mu \mathrm{~L}, 0.69 \mathrm{mmol})$ and triethylamine ($96 \mu \mathrm{~L}, 0.69 \mathrm{mmol}$) were
 added to a solution of ketone $\mathbf{5 1}(21 \mathrm{mg}, 0.069 \mathrm{mmol})$ in THF (2 mL) at $-78{ }^{\circ} \mathrm{C}$. Next, LiHMDS (1 m in THF, $140 \mu \mathrm{~L}, 0.14 \mathrm{mmol}$) was slowly introduced and the resulting mixture stirred at $-78^{\circ} \mathrm{C}$ for 1 h . The reaction was then quenched with pH 7 phosphate
buffer and the product extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 5 \mathrm{~mL})$. The combined organic phases were dried over MgSO_{4} and evaporated to give the corresponding silyl enol ether, which was used in the next step without purification.

Molecular sieves ($4 \AA$, ca. 200 mg) and aldehyde $\mathbf{4 1 b}(11 \mathrm{mg}, 0.069 \mathrm{mmol})$ were added to a solution of the crude silyl enol ether in propionitrile (1.4 mL). The mixture was cooled to $-78{ }^{\circ} \mathrm{C}$ before a solution of compound $\mathbf{4 2}$ [prepared upon stirring of a solution of PhBCl_{2} (13 $\mu \mathrm{L}, 0.080 \mathrm{mmol}$) and N-tosyl-D-tryptophane ($30 \mathrm{mg}, 0.080 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2.5 \mathrm{~mL})$ for 1 h , followed by removal of the solvent $]^{3}$ in propionitrile $(0.6 \mathrm{~mL})$ was added dropwise. After stirring for 20 h at $-78^{\circ} \mathrm{C}$, the reaction was quenched with sat. aq. NaHCO_{3}, the aqueous phase extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 5 \mathrm{~mL})$, and the combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated. The resulting crude product was dissolved in THF $(10 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ and treated with 1.3 mL of buffered HF-pyridine solution [prepared from THF (3.6 mL), pyridine (1.35 mL) and HF-pyridine complex ($0.27 \mathrm{~mL}, 70 \% w / w)$. The mixture was stirred at $0^{\circ} \mathrm{C}$ for 2 h and warmed to ambient temperature for 30 min . Dilution with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, washing of the organic layer with sat. aq. NaHCO_{3} and aq. CuSO_{4} solution (1 M), drying over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporation of the solvents left a residue, which was purified by preparative TLC (EtOAc/hexanes, 8/2) to give product 52 as a white solid ($22 \mathrm{mg}, 69 \%$) which contained small impurites of the (Z, E)-isomer. $[\alpha]_{D}^{20}=+75^{\circ}\left(c=0.5, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $(600 \mathrm{MHz}$, CDCl_{3}): $\delta=7.97(\mathrm{~s}, 1 \mathrm{H}), 6.84$ (ddd, $\left.J=15.6,12.2,3.5 \mathrm{~Hz}, 1 \mathrm{H}\right), 6.14-6.09(\mathrm{~m}, 2 \mathrm{H}), 5.53$ (dd, $J=15.6,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.37-5.30(\mathrm{~m}, 4 \mathrm{H}), 4.11-4.06(\mathrm{~m}, 1 \mathrm{H}), 3.42(\mathrm{dq}, J=9.7,6.8 \mathrm{~Hz}, 1 \mathrm{H})$, $3.25(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 2.90-2.83(\mathrm{~m}, 1 \mathrm{H}), 2.80-2.70(\mathrm{~m}, 2 \mathrm{H}), 2.60-2.57(\mathrm{~m}, 1 \mathrm{H}), 2.57-2.54(\mathrm{~m}, 2 \mathrm{H})$, $2.50-2.38(\mathrm{~m}, 2 \mathrm{H}), 2.31(\mathrm{t}, J=10.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.28(\mathrm{t}, J=10.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.25-2.18(\mathrm{~m}, 1 \mathrm{H})$, 2.09 (qd, $J=12.4,3.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.81(\mathrm{~d}, J=1.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.58(\mathrm{ddd}, J=14.1,10.6,4.9 \mathrm{~Hz}$, $1 \mathrm{H}), 1.33-1.26(\mathrm{~m}, 1 \mathrm{H}), 1.18(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.87 \mathrm{ppm}(\mathrm{d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=212.4$ (C), 172.1 (C), $172.0(\mathrm{C}), 166.3$ (C), 152.1 (CH), 134.3 (C), $133.4(\mathrm{CH}), 131.5(\mathrm{CH}), 128.6(\mathrm{CH}), 127.7(\mathrm{CH}), 127.3(\mathrm{CH}), 123.7(\mathrm{CH}), 81.7(\mathrm{CH}), 65.0$ $(\mathrm{CH}), 47.4\left(\mathrm{CH}_{2}\right), 46.8(\mathrm{CH}), 40.9\left(\mathrm{CH}_{2}\right), 38.6\left(\mathrm{CH}_{2}\right), 37.3(\mathrm{CH}), 37.2\left(\mathrm{CH}_{2}\right), 32.6\left(\mathrm{CH}_{2}\right)$, $27.3(\mathrm{CH}), 26.8\left(\mathrm{CH}_{2}\right), 16.8\left(\mathrm{CH}_{3}\right), 16.3\left(\mathrm{CH}_{3}\right), 15.8 \mathrm{ppm}\left(\mathrm{CH}_{3}\right)$; IR (film): 3250, 2962, 2932, 2874, 1697, 1453, 1374, 1249, 1149, 1065, 1034, 999, 917, 851, 829, $729 \mathrm{~cm}^{-1}$; HRMS (ESI): $m / z:$ calcd for $\mathrm{C}_{26} \mathrm{H}_{35} \mathrm{O}_{6} \mathrm{NNa}[\mathrm{M}+\mathrm{Na}]^{+}: 480.2357$; found: 480.2354.

Compound S6: A solution of TBAF. $3 \mathrm{H}_{2} \mathrm{O}$ (1 M in THF, $0.51 \mathrm{~mL}, 0.51 \mathrm{mmol}$) was added at
 $0^{\circ} \mathrm{C}$ to a solution of alkenylsilane $53(240 \mathrm{mg}, 0.42 \mathrm{mmol})$ in THF $(2.5 \mathrm{~mL})$. The resulting orange mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 5 min before $\mathrm{H}_{2} \mathrm{O}(68 \mu \mathrm{~L}, 3.8 \mathrm{mmol})$ and TBAF• $3 \mathrm{H}_{2} \mathrm{O}(1 \mathrm{~m}$ in THF, 1.2 $\mathrm{mL}, 1.2 \mathrm{mmol}$) were added. After stirring for 5 min at this temperature, iodobenzene ($141 \mu \mathrm{~L}, \quad 1.26 \mathrm{mmol}$) and $\left(\mathrm{Pd}_{2} \mathrm{dba}_{3}\right) \cdot \mathrm{CHCl}_{3} \quad(43 \mathrm{mg}, \quad 0.042 \mathrm{mmol})$ were successively introduced. The mixture was stirred for 30 min at $0^{\circ} \mathrm{C}$ and for 6 h at ambient temperature, before it was filtered through a pad of silica which was carefully rinsed with ethyl acetate. The combined filtrates were evaporated and the residue purified by flash chromatography (hexanes/EtOAc, $95 / 5 \rightarrow 90 / 10$) to give product $\mathbf{S 6}$ as a pale brown oil $(87 \mathrm{mg}, 54 \%) .[\alpha]_{D}^{20}=+48.5\left(\mathrm{c}=0.42, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta=7.36-7.27(\mathrm{~m}, 2 \mathrm{H}), 7.27-7.21(\mathrm{~m}, 1 \mathrm{H}), 7.20-7.14(\mathrm{~m}, 2 \mathrm{H}), 6.08-6.00(\mathrm{~m}, 2 \mathrm{H})$,
$5.32(\mathrm{~d}, J=9.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.26(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.19(\mathrm{dd}, J=10.9,10.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.63(\mathrm{qd}$, $J=6.2,6.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.23-3.12(\mathrm{~m}, 1 \mathrm{H}), 2.55-2.30(\mathrm{~m}, 4 \mathrm{H}), 2.06-1.90(\mathrm{~m}, 2 \mathrm{H}), 1.81(\mathrm{~d}, J=$ $1.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.75-1.61(\mathrm{~m}, 2 \mathrm{H}), 1.43-1.31(\mathrm{~m}, 1 \mathrm{H}), 1.21(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.07(\mathrm{~d}, J=7.0$ $\mathrm{Hz}, 3 \mathrm{H}), 1.01(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=172.3(\mathrm{C}), 139.3(\mathrm{C})$, $136.7(\mathrm{C}), 133.1(\mathrm{CH}), 132.6(\mathrm{CH}), 132.3(\mathrm{C}), 132.0(\mathrm{CH}), 131.5(\mathrm{CH}), 128.8(\mathrm{CH}), 128.0$ $(\mathrm{CH}), 126.8(\mathrm{CH}), 83.1(\mathrm{CH}), 71.5(\mathrm{CH}), 40.0(\mathrm{CH}), 36.3(\mathrm{CH}), 33.7\left(\mathrm{CH}_{2}\right), 27.8\left(\mathrm{CH}_{2}\right), 26.9$ $\left(\mathrm{CH}_{2}\right), 24.0\left(\mathrm{CH}_{2}\right), 20.3\left(\mathrm{CH}_{3}\right), 19.7\left(\mathrm{CH}_{3}\right), 16.5\left(\mathrm{CH}_{3}\right), 14.7\left(\mathrm{CH}_{3}\right)$; IR (film): 3444, 2964, 2928, 2873, 1725, 1492, 1444, 1373, 1339, 1252, 1221, 1196, 1149, 1086, 995, 966, 912, 873, $759,731,699 \mathrm{~cm}^{-1}$; HRMS (ESI): m / z calcd for $\mathrm{C}_{25} \mathrm{H}_{34} \mathrm{O}_{3} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 405.2400$; found 405.2405 .

Compound S7: $n \mathrm{BuLi}(1.6 \mathrm{M}$ in hexane, $0.35 \mathrm{~mL}, 0.56 \mathrm{mmol}$) was added dropwise to a
 solution of diisopropylamine ($79 \mu \mathrm{~L}, 0.56 \mathrm{mmol}$) in THF (2 mL) at $-78^{\circ} \mathrm{C}$. The resulting yellow solution was stirred at that temperature for 15 min before a solution of compound $\mathbf{S 6}(52 \mathrm{mg}, 0.14 \mathrm{mmol})$ in THF ($1 \mathrm{~mL}+0.5 \mathrm{~mL}$ rinse) was added via canula. The resulting mixture was warmed to $0^{\circ} \mathrm{C}$, causing a color change to orange. After 10 min , the mixture was cooled to $-78^{\circ} \mathrm{C}$ and $\mathrm{PhSeBr}(50 \mathrm{mg}$, 0.21 mmol) was introduced. The solution was slowly warmed to $0^{\circ} \mathrm{C}$ and stirred for 2 h before the reaction was quenched with sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}$. The aqueous phase was extracted with tert-butyl methyl ether, and the combined organic layers were dried over MgSO_{4} and evaporated to give the corresponding phenylselenide as a yellow syrup, which was directly used in the next step.

A solution of m-chloroperbenzoic acid ($70 \% w / w, 69 \mathrm{mg}, 0.28 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.5 \mathrm{~mL})$ was added to a solution of the crude selenide in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$. After stirring for 30 min at this temperature, diisopropylethylamine $(0.14 \mathrm{~mL}, 0.84 \mathrm{mmol})$ was introduced and the mixture warmed to ambient temperature. After stirring for 1 h , hexane was added, the solvents were evaporated, and the residue was purified by flash chromatography (hexanes/EtOAc, $90 / 10 \rightarrow 80 / 20)$ to give product $\mathbf{S 7}$ as a yellow oil $(20 \mathrm{mg}, 38 \%) .[\alpha]_{D}^{20}=-201\left(\mathrm{c}=1, \mathrm{CHCl}_{3}\right)$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.28(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.18(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.13(\mathrm{~d}$, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.78(\mathrm{ddd}, J=16.2,10.9,5.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.49(\mathrm{~d}, J=11.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.84(\mathrm{~d}$, $J=15.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.28-5.20(\mathrm{~m}, 2 \mathrm{H}), 5.17-5.09(\mathrm{~m}, 2 \mathrm{H}), 3.56(\mathrm{dq}, J=6.3,6.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.68-$ $2.60(\mathrm{~m}, 1 \mathrm{H}), 2.52-2.37(\mathrm{~m}, 3 \mathrm{H}), 2.37-2.22(\mathrm{~m}, 2 \mathrm{H}), 1.73(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.62(\mathrm{br} \mathrm{s}, 1 \mathrm{H})$, $1.16(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 3 \mathrm{H}), 0.98(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.50(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=166.9(\mathrm{C}), 145.7(\mathrm{CH}), 140.0(\mathrm{C}), 137.7(\mathrm{C}), 133.4(\mathrm{CH}), 132.8(\mathrm{CH})$, $132.5(\mathrm{CH}), 132.0(\mathrm{C}), 130.4(\mathrm{CH}), 128.0(\mathrm{CH}), 127.9(\mathrm{CH}), 127.8(\mathrm{CH}), 126.5(\mathrm{CH}), 82.6$ $(\mathrm{CH}), 71.5(\mathrm{CH}), 40.1(\mathrm{CH}), 37.1(\mathrm{CH}), 31.6\left(\mathrm{CH}_{2}\right), 27.5\left(\mathrm{CH}_{2}\right), 20.2\left(\mathrm{CH}_{3}\right), 16.6\left(\mathrm{CH}_{3}\right), 16.5$ $\left(\mathrm{CH}_{3}\right), 15.1\left(\mathrm{CH}_{3}\right)$; IR (film): 3486, 2966, 2929, 2872, 1717, 1640, 1492, 1450, 1376, 1331, 1189, 1148, 1083, 1006, 766, $703 \mathrm{~cm}^{-1}$; MS (EI): m/z (\%): 380 (1) [M] ${ }^{+}, 238$ (14), 170 (100), 155 (47), 142 (15), 91 (10), 68 (5), 41 (5); HRMS (ESI): m / z calcd for $\mathrm{C}_{25} \mathrm{H}_{32} \mathrm{O}_{3} \mathrm{Na}[\mathrm{M}+$ $\mathrm{Na}]^{+}: 403.2244$; found 403.2244 .

Compound 54. Dess-Martin periodinane ($40 \mathrm{mg}, 0.10 \mathrm{mmol}$) was added to a solution of
 alcohol $\mathbf{S 7}(30 \mathrm{mg}, 0.08 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. The mixture was stirred at ambient temperature for 30 min before the solvent was evaporated. The residue was purified by flash chromatography (hexanes/EtOAc, $90 / 10 \rightarrow 80 / 20$) to afford product 54 as a colorless oil ($22 \mathrm{mg}, 74 \%$). $[\alpha]_{D}^{20}=-27\left(\mathrm{c}=0.5, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.28(\mathrm{t}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.18(\mathrm{t}, J=$ $7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.12$ (d, $J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.79$ (ddd, $J=16.2,10.9,5.3$ $\mathrm{Hz}, 1 \mathrm{H}), 6.50(\mathrm{~d}, J=11.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.83(\mathrm{~d}, J=15.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.29$ (d, $J=9.6 \mathrm{~Hz}, 1 \mathrm{H}$), $5.24(\mathrm{dd}, J=13.4,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.13$ (d, $J=4.0 \mathrm{~Hz}, 1 \mathrm{H}$, overlap), 5.10 (dd, $J=11.2,11.2 \mathrm{~Hz}, 1 \mathrm{H}$, overlap), 3.47-3.37 (m, 1H), 2.69-2.60 (m, 1H), 2.55-2.39 (m, $2 \mathrm{H}), 2.38-2.22(\mathrm{~m}, 2 \mathrm{H}), 2.10(\mathrm{~s}, 3 \mathrm{H}), 1.79(\mathrm{~d}, J=1.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.16(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.48$ ppm (d, $J=6.8 \mathrm{~Hz}, 3 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=209.2(\mathrm{C}), 166.8(\mathrm{C}), 145.9(\mathrm{CH})$, 139.9 (C), 137.7 (C), 133.7 (CH), 133.2 (C), 132.6 (CH), 130.5 (CH), 129.3 (CH), 128.1 $(\mathrm{CH}), 128.0(\mathrm{CH}), 127.6(\mathrm{CH}), 126.5(\mathrm{CH}), 82.1(\mathrm{CH}), 46.8(\mathrm{CH}), 37.5(\mathrm{CH}), 31.7\left(\mathrm{CH}_{2}\right)$, $27.9\left(\mathrm{CH}_{3}\right), 27.5\left(\mathrm{CH}_{2}\right), 16.5\left(\mathrm{CH}_{3}\right), 16.1\left(\mathrm{CH}_{3}\right), 15.1 \mathrm{ppm}\left(\mathrm{CH}_{3}\right)$; IR (film): 3402, 2971, 2931, 2871, 1713, 1598, 1493, 1448, 1355, 1245, 1160, 1075, 1005, 765, 735, $702 \mathrm{~cm}^{-1}$; HRMS (ESI): $m / z:$ calcd for $\mathrm{C}_{25} \mathrm{H}_{30} \mathrm{O}_{3} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 401.2087$; found 401.2093.

Compound 55. $\mathrm{Me}_{3} \mathrm{SiCl}(74 \mu \mathrm{~L}, 0.58 \mathrm{mmol})$ and triethylamine ($81 \mu \mathrm{~L}, 0.58 \mathrm{mmol}$) were added to a solution of ketone $54(22 \mathrm{mg}, 0.058 \mathrm{mmol})$ in THF $(2 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$. Next, LiHMDS (1 M in THF, $0.12 \mathrm{~mL}, 0.12 \mathrm{mmol}$) was slowly introduced and the resulting mixture stirred at $-78^{\circ} \mathrm{C}$ for 1 h . The reaction was then quenched with pH 7 phosphate buffer and the product extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ($3 \times 1 \mathrm{~mL}$). The combined organic phases were dried over MgSO_{4} and evaporated to give the corresponding
 silyl enol ether, which was immediately used in the next step without further purification.

Molecular sieves ($4 \AA$, ca. 200 mg) and aldehyde $41 \mathbf{b}(9 \mathrm{mg}, 0.058 \mathrm{mmol})$ were added to a solution of the crude silyl enol ether in propionitrile (2 mL). The mixture was cooled to $-78{ }^{\circ} \mathrm{C}$ before a solution of compound 42 [prepared upon stirring of a solution of $\mathrm{PhBCl}_{2}(8 \mu \mathrm{~L}, 0.058 \mathrm{mmol})$ and N -tosyl-D-tryptophane ($21 \mathrm{mg}, 0.058 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$ for 1 h , followed by removal of the solvent ${ }^{3}$ in propionitrile $(0.5 \mathrm{~mL})$ was introduced. After stirring for 18 h at $-78^{\circ} \mathrm{C}$, the reaction was quenched with sat. aq. NaHCO_{3} $(2 \mathrm{~mL})$, the aqueous phase extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 5 \mathrm{~mL})$, and the combined organic layers were dried over MgSO_{4} and evaporated. The resulting crude product was dissolved in THF (5 mL) at $0{ }^{\circ} \mathrm{C}$ and treated with 1.5 mL of a stock solution of buffered HF-pyridine [prepared from THF (7.25 mL), pyridine (2.69 mL) and HF-pyridine complex ($0.54 \mathrm{~mL}, 70 \%$ $w / w)]$. The mixture was stirred at $0^{\circ} \mathrm{C}$ for 30 min and warmed to ambient temperature for 30 min to complete the desilylation. Dilution with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$, washing of the organic layer with sat. aq. $\mathrm{NaHCO}_{3}(10 \mathrm{~mL})$ and aq. CuSO_{4} solution ($1 \mathrm{~m}, 3 \times 10 \mathrm{~mL}$), drying over MgSO_{4} and evaporation of the solvents left a residue, which was purified by preparative TLC (EtOAc/hexanes, 80/20) to give product 55 as a white solid ($20 \mathrm{mg}, 65 \%$). The product was
further purified by preparative HPLC to isolate an analytically pure fraction (5 mg). $[\alpha]_{D}^{20}=-$ $144\left(\mathrm{c}=0.42, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.86(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.28(\mathrm{t}, J=7.6 \mathrm{~Hz}$, $2 \mathrm{H}), 7.18(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.11(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 6.80(\mathrm{ddd}, J=16.1,11.0,5.4 \mathrm{~Hz}, 1 \mathrm{H})$, $6.52(\mathrm{dt}, J=11.2,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.82(\mathrm{~d}, J=16.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.26(\mathrm{~d}, J=10.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.24$ (ddd, $J=12.4,4.1,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.11(\mathrm{~d}, J=4.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.07(\mathrm{dd}, J=11.3,11.3 \mathrm{~Hz}, 1 \mathrm{H})$, $4.12-4.05(\mathrm{~m}, 1 \mathrm{H}), 3.41(\mathrm{dq}, J=9.7,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.22(\mathrm{~s}, 1 \mathrm{H}), 2.77(\mathrm{ddd}, J=11.4,4.3,1.7$ $\mathrm{Hz}, 1 \mathrm{H}), 2.74$ (ddd, $J=11.5,4.3,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.68-2.63(\mathrm{~m}, 1 \mathrm{H}), 2.56-2.53(\mathrm{~m}, 2 \mathrm{H}), 2.53-$ $2.40(\mathrm{~m}, 3 \mathrm{H}), 2.36-2.25(\mathrm{~m}, 4 \mathrm{H}), 1.77(\mathrm{~d}, J=1.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.58$ (ddd, $J=14.1,10.6,4.9 \mathrm{~Hz}$, $1 \mathrm{H}), 1.32-1.24(\mathrm{~m}, 1 \mathrm{H}), 1.17(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.46 \mathrm{ppm}(\mathrm{d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=212.5$ (C), 172.1 (C), 172.0 (C), 166.9 (C), 146.3 (CH), 140.0 (C), $137.7(\mathrm{C}), 134.1(\mathrm{CH}), 134.0(\mathrm{C}), 132.4(\mathrm{CH}), 130.7(\mathrm{CH}), 128.5(\mathrm{CH}), 128.2(\mathrm{CH}), 128.2$ $(\mathrm{CH}), 127.7(\mathrm{CH}), 126.7(\mathrm{CH}), 81.8(\mathrm{CH}), 64.8(\mathrm{CH}), 47.4\left(\mathrm{CH}_{2}\right), 46.7(\mathrm{CH}), 40.8\left(\mathrm{CH}_{2}\right)$, $38.5\left(\mathrm{CH}_{2}\right), 37.5(\mathrm{CH}), 37.2\left(\mathrm{CH}_{2}\right), 31.8\left(\mathrm{CH}_{2}\right), 27.7\left(\mathrm{CH}_{2}\right), 27.1(\mathrm{CH}), 16.7\left(\mathrm{CH}_{3}\right), 16.2$ $\left(\mathrm{CH}_{3}\right), 15.6 \mathrm{ppm}\left(\mathrm{CH}_{3}\right)$; IR (film): 3486, 3225, 2966, 2928, 1697, 1640, 1442, 1373, 1330, 1313, 1263, 1186, 1145, 1085, 1005, 833, 766, 733, $702 \mathrm{~cm}^{-1}$; HRMS (ESI): m/z: calcd for $\mathrm{C}_{32} \mathrm{H}_{39} \mathrm{NO}_{6} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 556.2670$; found 556.2672.

Compound 57. A solution of enyne $22(150 \mathrm{mg}, 0.36 \mathrm{mmol})$ and (R, R)-(-)-[1,2-cyclohexanediamino- N, N^{\prime}-bis(3,5-di-tert-butylsalicylidene]-
 manganese chloride ($23 \mathrm{mg}, 0.036 \mathrm{mmol})^{8}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ was added to an aqueous solution of $\mathrm{NaOCl}[2 \mathrm{~mL}$ (prepared from a commercial solution of bleach ($0.56 \mathrm{~mL}, 2 \mathrm{M}$)] and a solution of $\mathrm{Na}_{2} \mathrm{HPO}_{4}(1.44 \mathrm{~mL}, 0.05 \mathrm{~m})$ at $4^{\circ} \mathrm{C} .2$ Drops of $\mathrm{NaOH}(1 \mathrm{~m})$ were added to reach $\mathrm{pH} 11-12$ and the resulting mixture was stirred for 17 h at this temperature before a second portion of the catalyst ($40 \mathrm{mg}, 0.063 \mathrm{mmol}$) and of the NaOCl solution (4 mL) were added. The reaction mixture was stirred at $4{ }^{\circ} \mathrm{C}$ until TLC showed complete conversion. For work up, the mixture was diluted with water and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and the combined organic layers were dried over MgSO_{4} and evaporated. The residue was purified by flash chromatography (hexanes/EtOAc, 10/0 \rightarrow 95/5) to give epoxide 57 as a syrup ($104 \mathrm{mg}, 66 \%$). $[\alpha]_{D}^{20}=+13^{\circ}$ $\left(c=0.55, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=5.40(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.21(\mathrm{~d}, J=$ $3.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.75(\mathrm{qd}, J=6.1,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.47-3.46(\mathrm{~m}, 1 \mathrm{H}), 2.85(\mathrm{dd}, J=9.8,3.8 \mathrm{~Hz}, 1 \mathrm{H})$, $2.71(\mathrm{dd}, J=17.3,12.3,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.46-2.33(\mathrm{~m}, 3 \mathrm{H}), 2.33-2.17(\mathrm{~m}, 3 \mathrm{H}), 1.79-1.69(\mathrm{~m}, 1$ H, overlap), 1.73 (d, $J=1.3 \mathrm{~Hz}, 3 \mathrm{H}$, overlap), 1.67-1.54 (m, 2H), 1.15 (t, $J=7.1 \mathrm{~Hz}, 3 \mathrm{H})$, $1.06(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 3 \mathrm{H}), 0.97(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 0.95(\mathrm{t}, J=7.8 \mathrm{~Hz}, 9 \mathrm{H}), 0.57 \mathrm{ppm}(\mathrm{q}, J=$ $7.8 \mathrm{~Hz}, 6 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=172.3(\mathrm{C}), 133.7(\mathrm{CH}), 128.9(\mathrm{C}), 87.3(\mathrm{C})$, $80.5(\mathrm{CH}), 76.6(\mathrm{C}), 71.4(\mathrm{CH}), 60.2(\mathrm{CH}), 46.4(\mathrm{CH}), 39.6(\mathrm{CH}), 38.4(\mathrm{CH}), 32.4\left(\mathrm{CH}_{2}\right)$, $25.8\left(\mathrm{CH}_{2}\right), 23.9\left(\mathrm{CH}_{2}\right), 21.2\left(\mathrm{CH}_{3}\right), 18.0\left(\mathrm{CH}_{2}\right), 16.4\left(\mathrm{CH}_{3}\right), 15.2\left(\mathrm{CH}_{3}\right), 14.7\left(\mathrm{CH}_{3}\right), 7.0$ $\left(\mathrm{CH}_{3}\right), 5.2 \mathrm{ppm}\left(\mathrm{CH}_{2}\right)$; IR (film): 2955, 2931, 2875, 1732, 1456, 1375, 1340, 1239, 1196, 1150, 1088, 1064, 1006, 975, 878, 833, 741, $723 \mathrm{~cm}^{-1}$; MS (EI): m/z (\%): 161 (5), 160 (14), 159 (100), 131 (27), 116 (6), 115 (51), 109 (9), 103 (9), 91 (8), 87 (23), 79 (5), 77 (7), 75 (13), 67 (5), 59 (10), 55 (7), 43 (6), 41 (7), 40 (6); HRMS (ESI): $m / z:$ calcd for $\mathrm{C}_{25} \mathrm{H}_{42} \mathrm{O}_{4} \mathrm{SiNa}$ $[\mathrm{M}+\mathrm{Na}]^{+}: 457.2745$; found: 475.2747.

[^5]Compound 58: $\left[\mathrm{Cp} * \mathrm{Ru}(\mathrm{MeCN})_{3}\right] \mathrm{PF}_{6}(4.3 \mathrm{mg}, 0.0085 \mathrm{mmol})$ and benzyldimethylsilane (40 $\mu \mathrm{L}, 0.26 \mathrm{mmol}$) were successively added to a solution of cycloalkyne
 $57(37 \mathrm{mg}, 0.085 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.5 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$. The mixture was stirred for 1 h at this temperature and then warmed to ambient temperature. Next, the solvent was slowly evaporated by a stream of Ar. After 30 min a second portion of $\left[\mathrm{Cp} * \mathrm{Ru}(\mathrm{MeCN})_{3}\right] \mathrm{PF}_{6}(3.0 \mathrm{mg}$, 0.006 mmol) and benzyldimethylsilane ($20 \mu \mathrm{~L}, 0.13 \mathrm{mmol}$) were added and the reaction mixture was stirred until TLC indicated complete conversion (ca. 30 min). The residue was purified by flash chromatography (hexanes/EtOAc, 90/10) to give the corresponding alkenylsilane, which was directly used in the next step.

A solution of anhydrous TBAF (1 M in THF, $0.44 \mathrm{~mL}, 0.44 \mathrm{mmol}$) was added to a solution of this alkenylsilane in THF (0.5 mL) and the resulting mixture stirred at ambient temperature for 1 h and at $50^{\circ} \mathrm{C}$ for 45 min . The solvent was evaporated and the residue purified by flash chromatography (hexanes/EtOAc, 60/40) to give alkene 58 as a colorless oil ($25 \mathrm{mg}, 91 \%$). $[\alpha]_{D}^{20}=-38^{\circ}\left(c=1.0, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=6.00(\mathrm{dt}, J=15.8,6.1 \mathrm{~Hz}$, $1 \mathrm{H}), 5.30(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.26(\mathrm{dd}, J=15.6,8.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.08(\mathrm{~d}, J=4.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.61$ (dq, $J=6.2,6.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.46(\mathrm{dd}, J=8.6,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.90(\mathrm{dd}, J=10.1,4.2 \mathrm{~Hz}, 1 \mathrm{H})$, 2.49-2.40 (m, 1H), 2.40-2.30 (m, 1H), 2.30-2.18 (m, 2H), 2.17-2.01 (m, 2H), 2.00-1.88 (m, $1 \mathrm{H}), 1.73(\mathrm{~d}, J=1.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.65-1.49(\mathrm{~m}, 2 \mathrm{H}), 1.17(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.10(\mathrm{~d}, J=6.9$ $\mathrm{Hz}, 3 \mathrm{H}$), $0.98 \mathrm{ppm}(\mathrm{d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=172.7$ (C), 135.5 $(\mathrm{CH}), 133.4(\mathrm{CH}), 131.4(\mathrm{C}), 126.3(\mathrm{CH}), 81.4(\mathrm{CH}), 71.4(\mathrm{CH}), 60.2(\mathrm{CH}), 58.3(\mathrm{CH}), 39.9$ $(\mathrm{CH}), 36.0(\mathrm{CH}), 33.4\left(\mathrm{CH}_{2}\right), 30.5\left(\mathrm{CH}_{2}\right), 25.4\left(\mathrm{CH}_{2}\right), 23.5\left(\mathrm{CH}_{2}\right), 20.4\left(\mathrm{CH}_{3}\right), 16.4\left(\mathrm{CH}_{3}\right)$, $15.5\left(\mathrm{CH}_{3}\right), 14.9 \mathrm{ppm}\left(\mathrm{CH}_{3}\right)$; IR (film): 3491, 2968, 2931, 1727, 1454, 1375, 1336, 1255, 1202, 1170, 1147, 1089, 973, 933, 874, $825 \mathrm{~cm}^{-1}$; HRMS (ESI): m/z: calcd for $\mathrm{C}_{19} \mathrm{H}_{30} \mathrm{O}_{4} \mathrm{Na}$ $[\mathrm{M}+\mathrm{Na}]^{+}: 345.2036$; found: 345.2035.

Compounds 59 and 60: A solution of $p-\mathrm{TsOH}(0.2 \mathrm{mg}, 0.0011 \mathrm{mmol})$ in methanol (0.1 mL)
 was added to a solution of epoxide 58 ($7.0 \mathrm{mg}, 0.022 \mathrm{mmol}$) in methanol $(0.3 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. The mixture was stirred for 45 min at this temperature and then directly purified by flash chromatography (hexanes/EtOAc, 80/20 $\rightarrow 70 / 30$) to give compound $\mathbf{5 9}(2.5 \mathrm{mg}, 32 \%)$ and compound $\mathbf{6 0}(4.0 \mathrm{mg}, 52 \%)$ as a colorless oil each. Spectral data of compound 59: ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=5.62$ (ddd, $J=15.7$, 9.3, 4.1 $\mathrm{Hz}, 1 \mathrm{H}), 5.43(\mathrm{dd}, J=15.8,7.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.13(\mathrm{~s}, 1 \mathrm{H}), 4.95(\mathrm{~d}, J=10.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.82(\mathrm{~d}, J=$ $7.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.72(\mathrm{dd}, J=6.0,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.36(\mathrm{dq}, J=6.2,7.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.25(\mathrm{~s}, 3 \mathrm{H}), 2.37-$ $2.29(\mathrm{~m}, 2 \mathrm{H}), 2.22-2.15(\mathrm{~m} .2 \mathrm{H}), 2.13-2.06(\mathrm{~m}, 2 \mathrm{H}), 1.84-1.70(\mathrm{~m}, 2 \mathrm{H}), 1.68(\mathrm{~d}, J=1.2 \mathrm{~Hz}$, $3 \mathrm{H}), 1.63-1.54(\mathrm{~m}, 4 \mathrm{H}), 1.13(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 3 \mathrm{H}), 0.97(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 0.91 \mathrm{ppm}(\mathrm{d}, J=$ $6.7 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=173.2(\mathrm{C}), 136.0(\mathrm{CH}), 135.1(\mathrm{C}), 128.4(\mathrm{CH})$, $127.1(\mathrm{CH}), 84.5(\mathrm{CH}), 77.2(\mathrm{CH}), 76.8(\mathrm{CH}), 71.8(\mathrm{CH}), 56.5\left(\mathrm{CH}_{3}\right), 40.3(\mathrm{CH}), 37.2(\mathrm{CH})$, $34.7\left(\mathrm{CH}_{2}\right), 30.0\left(\mathrm{CH}_{2}\right), 28.9\left(\mathrm{CH}_{2}\right), 22.8\left(\mathrm{CH}_{2}\right), 19.9\left(\mathrm{CH}_{3}\right), 16.8\left(\mathrm{CH}_{3}\right), 14.6\left(\mathrm{CH}_{3}\right), 11.1$ ppm (CH_{3}); IR (film): 3433, 2967, 2928, 1727, 1448, 1373, 1251, 1188, 1155, 1092, 1042,

1013, 983, 969, 919, $703 \mathrm{~cm}^{-1}$; MS (EI): m/z (\%): 183 (10), 172 (30), 171 (100), 169 (13), 154 (20), 153 (17), 151 (23), 139 (25), 137 (11), 126 (10), 125 (15), 123 (11), 121 (19), 112 (35), 111 (15), 110 (37), 109 (56), 97 (25), 95 (29), 94 (10), 93 (11), 81 (10), 79 (16), 71 (28), 69 (15), 67 (14), 55 (15), 45 (11), 43 (18), 41 (14); HRMS (ESI): m/z: calcd for $\mathrm{C}_{20} \mathrm{H}_{34} \mathrm{O}_{5} \mathrm{Na}$ [M $+\mathrm{Na}]^{+}: 377.2298$; found: 377.2297.

Spectral data of compound $\mathbf{6 0}:{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=6.00(\mathrm{dd}, J=15.8,1.9 \mathrm{~Hz}$, $1 \mathrm{H}), 5.38$ (ddd, $J=15.7,9.3,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.01(\mathrm{~s}, 1 \mathrm{H}), 4.89(\mathrm{~d}, J=10.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.43-4.38$ $(\mathrm{m}, 1 \mathrm{H}), 3.79$ (td, $J=9.9,5.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.33$ (dq. $J=6.8,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.26(\mathrm{~s}, 3 \mathrm{H}), 2.48$ (dt, $J=13.1,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.41-2.30(\mathrm{~m}, 1 \mathrm{H}), 2.15-2.02(\mathrm{~m}, 2 \mathrm{H}), 1.85-1.52(\mathrm{~m}, 4 \mathrm{H}$, overlap $)$, 1.69 (d, $J=0.9 \mathrm{~Hz}, 3 \mathrm{H}$, overlap) 1.47-1.41 (m, 2H), 1.41-1.36 (m, 2H), $1.15(\mathrm{~d}, J=6.0 \mathrm{~Hz}$, $3 \mathrm{H}), 1.03(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}), 0.93 \mathrm{ppm}(\mathrm{d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=173.9(\mathrm{C}), 137.1(\mathrm{C}), 134.7(\mathrm{CH}), 126.5(\mathrm{CH}), 125.6(\mathrm{CH}), 82.2(\mathrm{CH}), 74.5(\mathrm{CH}), 72.4$ $(\mathrm{CH}), 72.0(\mathrm{CH}), 56.2\left(\mathrm{CH}_{3}\right), 40.7(\mathrm{CH}), 40.6(\mathrm{CH}), 35.9\left(\mathrm{CH}_{2}\right), 31.2\left(\mathrm{CH}_{2}\right), 24.0\left(\mathrm{CH}_{2}\right), 22.0$ $\left(\mathrm{CH}_{2}\right), 20.0\left(\mathrm{CH}_{3}\right), 17.1\left(\mathrm{CH}_{3}\right), 15.5\left(\mathrm{CH}_{3}\right), 10.1 \mathrm{ppm}\left(\mathrm{CH}_{3}\right)$.

Compound 62. p-TsOH ($17 \mathrm{mg}, 0.09 \mathrm{mmol}$) was added to a solution of epoxide 57 (79 mg , $0.18 \mathrm{mmol})$ in methanol (6 mL). The mixture was heated to $60^{\circ} \mathrm{C}$ for
 2 h before the solvent was evaporated. The residue was purified by flash chromatography (hexanes/EtOAc, 60/40) to give compound 62 as a pale yellow oil ($60 \mathrm{mg}, 94 \%$). $[\alpha]_{D}^{20}=+70^{\circ}\left(c=1.0, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=5.18(\mathrm{~d}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.07(\mathrm{dt}, J=$ $9.3,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.03(\mathrm{dd}, J=9.7,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.64-3.58(\mathrm{~m}, 1 \mathrm{H})$, $3.41(\mathrm{~s}, 3 \mathrm{H}), 3.37(\mathrm{dq}, J=8.6,6.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.89(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 2.58(\mathrm{ddd}, J=13.9,7.1,2.4 \mathrm{~Hz}$, $1 \mathrm{H}), 2.41-2.30(\mathrm{~m}, 2 \mathrm{H}), 2.25-2.14(\mathrm{~m}, 2 \mathrm{H}), 2.10-1.96(\mathrm{~m}, 2 \mathrm{H}), 1.81(\mathrm{~d}, J=1.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.80-$ $1.64(\mathrm{~m}, 2 \mathrm{H}), 1.53-1.40(\mathrm{~m}, 1 \mathrm{H}), 1.17(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 3 \mathrm{H}), 0.96(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 0.92 \mathrm{ppm}$ (d, $J=6.7 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=172.4$ (C), 133.4 (C), 130.9 (CH), 89.0 (C), $79.5(\mathrm{CH}), 77.8(\mathrm{C}), 73.9(\mathrm{CH}), 72.4(\mathrm{CH}), 72.2(\mathrm{CH}), 57.1\left(\mathrm{CH}_{3}\right), 40.9(\mathrm{CH}), 39.5(\mathrm{CH})$, $34.7\left(\mathrm{CH}_{2}\right), 27.0\left(\mathrm{CH}_{2}\right), 23.7\left(\mathrm{CH}_{2}\right), 20.1\left(\mathrm{CH}_{3}\right), 18.4\left(\mathrm{CH}_{2}\right), 16.8\left(\mathrm{CH}_{3}\right), 13.9\left(\mathrm{CH}_{3}\right), 10.9$ $\left(\mathrm{CH}_{3}\right)$; IR (film): 3450, 2924, 2854, 1728, 1452, 1376, 1252, 1146, 1101, 1046, 983, 904, 832, $761,699 \mathrm{~cm}^{-1}$; HRMS (ESI): m/z: calcd for $\mathrm{C}_{20} \mathrm{H}_{32} \mathrm{O}_{5} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 375.2142$; found: 375.2143 .

Compound 63: Dess-Martin periodinane ($119 \mathrm{mg}, 0.28 \mathrm{mmol}$) was added to a solution of
 alcohol $62(50 \mathrm{mg}, 0.14 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. After stirring for 3 h at this temperature, the solvent was slowly evaporated by a stream of Ar and the residue purified by flash chromatography (hexanes/EtOAc, 80/20 $\rightarrow 70 / 30$) to give ketone 63 as a white solid ($36 \mathrm{mg}, 73 \%$). M.p.: $131-132^{\circ} \mathrm{C}$; $[\alpha]_{D}^{20}=+285^{\circ}(c=$ $1.0, \mathrm{CHCl}_{3}$); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=5.20(\mathrm{~d}, J=9.7 \mathrm{~Hz}$, $1 \mathrm{H}), 5.15(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.99(\mathrm{dd}, J=9.7,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.60(\mathrm{dq}, J=9.5,1.1 \mathrm{~Hz}, 1 \mathrm{H})$, $3.43(\mathrm{~s}, 3 \mathrm{H}), 3.43-3.35(\mathrm{~m}, 1 \mathrm{H}), 2.74(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 2.57(\mathrm{ddd}, J=14.9,8.1,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.36$ (ddt, $J=17.1,7.1,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.27-2.16(\mathrm{~m}, 2 \mathrm{H}), 2.15-2.04$ (m, 1 H , overlap), 2.11 ($\mathrm{s}, 3 \mathrm{H}$, overlap), 2.03-1.91 (m, 1H), $1.84(\mathrm{~d}, J=1.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.82-1.75(\mathrm{~m}, 1 \mathrm{H}), 1.73-1.61(\mathrm{~m}, 1 \mathrm{H})$, $1.57-1.45(\mathrm{~m}, 1 \mathrm{H}), 1.11(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 0.93 \mathrm{ppm}(\mathrm{d}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $(100$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=209.6(\mathrm{C}), 172.1(\mathrm{C}), 134.3(\mathrm{C}), 127.3(\mathrm{CH}), 88.6(\mathrm{C}), 79.4(\mathrm{CH}), 77.7(\mathrm{C})$,
$74.1(\mathrm{CH}), 71.6(\mathrm{CH}), 56.8\left(\mathrm{CH}_{3}\right), 46.6(\mathrm{CH}), 39.0(\mathrm{CH}), 34.2\left(\mathrm{CH}_{2}\right), 28.0\left(\mathrm{CH}_{3}\right), 26.8\left(\mathrm{CH}_{2}\right)$, $23.3\left(\mathrm{CH}_{2}\right)$, $18.1\left(\mathrm{CH}_{2}\right), 15.8\left(\mathrm{CH}_{3}\right), 13.5\left(\mathrm{CH}_{3}\right), 10.7 \mathrm{ppm}\left(\mathrm{CH}_{3}\right)$; IR (film): 3534, 2931, 2873, 1717, 1703, 1445, 1409, 1346, 1328, 1312, 1248, 1223, 1167, 1143, 1107, 1039, 979, 875, $760 \mathrm{~cm}^{-1}$; MS (EI): m/z (\%): 350 (2) [M+], 181 (11), 170 (15), 169 (100), 149 (11), 137 (37), 125 (12), 123 (23), 121 (28), 111 (15), 110 (10), 109 (82), 95 (16), 93 (21), 92 (10), 91 (23), 85 (65), 84 (62), 81 (20), 79 (31), 77 (15), 69 (19), 67 (21), 55 (20), 53 (13), 43 (67), 41 (24); HRMS (ESI): $m / z:$ calcd for $\mathrm{C}_{20} \mathrm{H}_{30} \mathrm{O}_{5} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 373.1985$; found: 373.1984.

Compound 61b. $\mathrm{Ph}_{3} \mathrm{SnH}(200 \mathrm{mg}, 0.57 \mathrm{mmol}$) and AIBN ($7 \mathrm{mg}, 0.042 \mathrm{mmol}$) were added to

 a solution of alkyne $\mathbf{6 2}(50 \mathrm{mg}, 0.14 \mathrm{mmol})$ in degassed toluene (6 mL). The mixture was stirred at $80^{\circ} \mathrm{C}$ for 4 h before additional $\mathrm{Ph}_{3} \mathrm{SnH}(50 \mathrm{mg}, 0.14 \mathrm{mmol})$ and $\operatorname{AIBN}(7 \mathrm{mg}, 0.042 \mathrm{mmol})$ were added. After stirring for 7 h at this temperature, the solvent was evaporated and the residue was purified by flash chromatography (hexanes/EtOAc, 90/10 $\rightarrow 80 / 20$) to give stanane 61b ($64 \mathrm{mg}, 65 \%$) as a colorless oil. $[\alpha]_{D}^{20}=+13.4^{\circ}\left(c=0.79, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.63-7.55(\mathrm{~m}, 6 \mathrm{H}), 7.43-7.31(\mathrm{~m}, 9 \mathrm{H}), 6.77(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.19(\mathrm{~d}, J=$ $2.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.04(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.91(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.61(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H})$, 3.38-3.29 (m, 1H), $3.20(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 3.14(\mathrm{~s}, 3 \mathrm{H}), 2.88(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 2.41-2.28(\mathrm{~m}, 2 \mathrm{H}), 2.20-2.03$ $(\mathrm{m}, 3 \mathrm{H}), 2.03-1.88(\mathrm{~m}, 1 \mathrm{H}), 1.80(\mathrm{~d}, J=0.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.74-1.60(\mathrm{~m}, 2 \mathrm{H}), 1.48-1.30(\mathrm{~m}, 2 \mathrm{H})$, $1.18(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.92(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 0.78 \mathrm{ppm}(\mathrm{d}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=171.9,148.2,142.0,138.7,137.2,133.3,131.1,129.1,128.9,85.4$, $79.6,73.2,72.5,57.2,40.8,38.6,35.1,32.3,28.2,21.9,19.9,16.7,13.5,10.7 \mathrm{ppm}$; IR (film): 3499, 2928, 1728, 429, 1251, 1094, 1073, 1044, 977, 729, $699 \mathrm{~cm}^{-1}$; MS (EI): m/z (\%): 628 (10), 627 (31), 626 (16), 625 (24), 624 (11), 623 (13), 445 (17), 444 (12), 443 (32), 442 (16), 441 (29), 440 (12), 439 (16), 367 (19), 366 (13), 365 (25), 364 (14), 363 (22), 361 (10), 355 (19), 353 (16), 352 (19), 351 (100), 350 (39), 349 (76), 348 (30), 347 (43), 289 (12), 287 (10), 275 (12), 197 (23), 195 (18), 194 (15), 193 (10), 109 (14); HRMS (ESI): m/z: calcd for $\mathrm{C}_{38} \mathrm{H}_{48} \mathrm{O}_{5} \mathrm{SnNa}[\mathrm{M}+\mathrm{Na}]^{+}: 727.2415$; found: 727.2424.

Compound 61a: Iodine ($19 \mathrm{mg}, 0.073 \mathrm{mmol}$) was added to a solution of stanane 61b (43 mg ,
 $0.061 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$. After 10 min , the reaction was warmed to ambient temperature and stirred for 20 min before the solvent was slowly evaporated by a stream of Ar. The residue was purified by flash chromatography (hexanes/EtOAc, 80/20 \rightarrow $70 / 30$) to give iodide 61c as a yellow oil ($24 \mathrm{mg}, 82 \%$).
$\mathrm{Bu}_{3} \mathrm{SnH}(22 \mu \mathrm{~L}, 0.082 \mathrm{mmol})$ and $\mathrm{AIBN}(4 \mathrm{mg}, 0.024 \mathrm{mmol})$ were successively added to a solution of this iodide in degassed toluene (1 mL). The mixture was stirred at $65^{\circ} \mathrm{C}$ for 2 h prior to evaporation of the solvent. The residue was purified by flash chromatography (hexanes/EtOAc, 80/20 \rightarrow 60/40) to give alkene 61a as a colorless oil ($12 \mathrm{mg}, 63 \%$). $[\alpha]_{D}^{20}=$ $+44^{\circ}\left(c=0.5, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=5.66(\mathrm{ddd}, J=15.8,8.6,6.9 \mathrm{~Hz}$, $1 \mathrm{H}), 5.26(\mathrm{dd}, J=16.0,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.11(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.06(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.67$ (dd, $J=9.4,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.43-3.34(\mathrm{~m}, 1 \mathrm{H}), 3.32-3.23(\mathrm{~m}, 1 \mathrm{H}$, overlap), $3.30(\mathrm{~s}, 3 \mathrm{H}), 3.14$ (br s, 1H), 3.09 (br s, 1H), 2.46 (dt, $J=13.5,4.5 \mathrm{~Hz}, 1 \mathrm{H}$), 2.41-2.30 (m, 1H), 2.26-2.17 (m, $1 \mathrm{H}), 2.15-2.06(\mathrm{~m}, 1 \mathrm{H}), 1.94-1.86(\mathrm{~m}, 1 \mathrm{H}), 1.82(\mathrm{~d}, J=1.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.78-1.55(\mathrm{~m}, 5 \mathrm{H}), 1.18$
(d, $J=6.3 \mathrm{~Hz}, 3 \mathrm{H}), 0.97(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}), 0.93 \mathrm{ppm}(\mathrm{d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=172.4(\mathrm{C}), 135.4(\mathrm{CH}), 133.2(\mathrm{C}), 130.9(\mathrm{CH}), 130.3(\mathrm{CH}), 82.2(\mathrm{CH}), 79.5$ $(\mathrm{CH}), 72.4(\mathrm{CH}), 71.7(\mathrm{CH}), 56.6\left(\mathrm{CH}_{3}\right), 40.8(\mathrm{CH}), 38.3(\mathrm{CH}), 34.9\left(\mathrm{CH}_{2}\right), 30.2\left(\mathrm{CH}_{2}\right), 26.5$ $\left(\mathrm{CH}_{2}\right)$, $22.4\left(\mathrm{CH}_{2}\right), 20.0\left(\mathrm{CH}_{3}\right), 16.7\left(\mathrm{CH}_{3}\right), 13.8\left(\mathrm{CH}_{3}\right), 10.9 \mathrm{ppm}\left(\mathrm{CH}_{3}\right)$; IR (film): 3481, 2926, 2855, 1729, 1452, 1377, 1252, 1190, 1142, 1100, 1041, $982 \mathrm{~cm}^{-1}$; MS (EI): $\mathrm{m} / \mathrm{z}(\%)$: 278 (25), 172 (18), 171 (100), 170 (12), 169 (15), 154 (24), 153 (19), 151 (28), 139 (21), 137 (19), 126 (26), 125 (14), 123 (17), 121 (21), 112 (17). 11 (25), 110 (40), 109 (69), 107 (10), 98 (16), 97 (54), 96 (22), 95 (37), 94 (22), 93 (23), 91 (10), 81 (20), 79 (31), 71 (45), 69 (26), 67 (34), 57 (15), 55 (35), 53 (11), 45 (25), 43 (36), 41 (38); HRMS (ESI): m/z: calcd for $\mathrm{C}_{20} \mathrm{H}_{34} \mathrm{O}_{5} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 377.2298$; found: 377.2299.

Compound 65: Dess-Martin periodinane ($45 \mathrm{mg}, 0.11 \mathrm{mmol}$) was added to a solution of
 alcohol 61a ($15 \mathrm{mg}, 0.042 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$. After stirring for 4 h at this temperature, the solvent was evaporated and the residue purified by flash chromatography (hexanes/EtOAc, 80/20 \rightarrow $70 / 30$) to give ketone $\mathbf{6 5}$ as a white solid ($10 \mathrm{mg}, 68 \%$). $[\alpha]_{D}^{20}=$ $+192^{\circ}\left(c=0.5, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=5.68(\mathrm{dt}$, $J=15.5,7.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.30(\mathrm{dd}, J=16.0,6.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.19(\mathrm{~d}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.05(\mathrm{~d}, J=$ $3.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.65(\mathrm{dd}, J=9.3,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.40(\mathrm{dq}, J=9.6,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.31(\mathrm{~s}, 3 \mathrm{H}), 3.31-$ $3.23(\mathrm{~m}, 1 \mathrm{H}), 2.99(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 2.46-2.38(\mathrm{~m}, 1 \mathrm{H}), 2.27-2.15(\mathrm{~m}, 2 \mathrm{H}), 2.11(\mathrm{~s}, 3 \mathrm{H}), 1.98-1.89$ $(\mathrm{m}, 2 \mathrm{H}), 1.83(\mathrm{~d}, J=1.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.78-1.66(\mathrm{~m}, 3 \mathrm{H}), 1.40-1.27(\mathrm{~m}, 1 \mathrm{H}), 1.12(\mathrm{~d}, J=6.8 \mathrm{~Hz}$, $3 \mathrm{H}), 0.95 \mathrm{ppm}(\mathrm{d}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=209.8(\mathrm{C}), 172.3$ (C), $135.5(\mathrm{CH}), 134.3(\mathrm{C}), 129.5(\mathrm{CH}), 127.0(\mathrm{CH}), 82.6(\mathrm{CH}), 79.3(\mathrm{CH}), 72.2(\mathrm{CH}), 56.5$ $\left(\mathrm{CH}_{3}\right), 46.6(\mathrm{CH}), 38.2(\mathrm{CH}), 34.4\left(\mathrm{CH}_{2}\right), 30.2\left(\mathrm{CH}_{2}\right), 28.1\left(\mathrm{CH}_{3}\right), 26.5\left(\mathrm{CH}_{2}\right), 22.6\left(\mathrm{CH}_{3}\right)$, $15.9\left(\mathrm{CH}_{3}\right), 13.7\left(\mathrm{CH}_{3}\right), 11.0 \mathrm{ppm}\left(\mathrm{CH}_{3}\right)$; IR (film): 3526, 2931, 1715, 1449, 1430, 1355, 1251, 1185, 1151, 1102, 1040, 981, 872, 731, $699 \mathrm{~cm}^{-1}$; MS (EI): $m / z(\%): 181$ (7), 172 (10), 171 (100), 155 (7), 154 (19), 153 (20), 151 (6), 139 (23), 126 (7), 125 (8), 123 (9), 121 (24), 111 (13), 110 (19), 109 (31), 98 (5), 97 (20), 95 (11), 94 (10), 93 (10), 81 (7), 79 (15), 71 (22), 69 (8), 67 (12), 57 (6), 55 (11), 45 (7), 43 (31), 41 (13); HRMS (ESI): $m / z:$ calcd for $\mathrm{C}_{20} \mathrm{H}_{32} \mathrm{O}_{5} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 375.2142$; found: 375.2138.

Compound 56: $\mathrm{Me}_{3} \mathrm{SiCl}(18 \mu \mathrm{~L}, 0.14 \mathrm{mmol})$ and triethylamine ($20 \mu \mathrm{~L}, 0.14 \mathrm{mmol}$) were added to a solution of ketone $\mathbf{6 5}(5.0 \mathrm{mg}, 0.014$
 $\mathrm{mmol})$ in THF $(0.5 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$. Next, LiHMDS (1 M in THF, $84 \mu \mathrm{~L}, 0.084 \mathrm{mmol}$) was slowly introduced and the resulting mixture stirred at $-78^{\circ} \mathrm{C}$ for 1 h . The reaction was then quenched with pH 7 phosphate buffer and the product extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 2 \mathrm{~mL})$. The combined organic phases were dried over MgSO_{4} and evaporated to give the corresponding silyl enol ether, which was used in the next step without further purification.
Molecular sieves ($4 \AA$, ca. 100 mg) and aldehyde $\mathbf{4 1 b}(2.2 \mathrm{mg}, 0.014 \mathrm{mmol})$ were added to a solution of the crude silyl enol ether in propionitrile $(0.4 \mathrm{~mL})$. The mixture was cooled to $-78{ }^{\circ} \mathrm{C}$ before a solution of compound $\mathbf{4 2}$ [prepared upon stirring of a solution of $\mathrm{PhBCl}_{2}(1.8$ $\mu \mathrm{L}, 0.014 \mathrm{mmol}$) and N -tosyl-D-tryptophane ($5 \mathrm{mg}, 0.014 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.5 \mathrm{~mL})$ for 1 h ,
followed by removal of the solvent $]^{3}$ in propionitrile $(0.1 \mathrm{~mL})$ was added. After stirring for 18 h at $-78{ }^{\circ} \mathrm{C}$, the reaction was quenched with sat. aq. NaHCO_{3}, the aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 2 \mathrm{~mL})$, and the combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated. The resulting crude product was dissolved in THF $(4 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ and treated with 0.5 mL of buffered HF-pyridine solution [prepared from THF (3.6 mL), pyridine (1.35 mL) and HF-pyridine complex $(0.27 \mathrm{~mL}, 70 \% \mathrm{w} / \mathrm{w})$]. The mixture was stirred at $0^{\circ} \mathrm{C}$ for 1 h and warmed to ambient temperature for 30 min , before a second portion of buffered HF-pyridine solution $(0.5 \mathrm{~mL})$ was added and the solvent was slowly evaporated by a stream of Ar. After stirring of the remaining syrup for 2 h , the mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, the organic phase was washed with sat. aq. NaHCO_{3} and CuSO_{4} solution (1 m) before it was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated. The residue was purified by flash chromatography (EtOAc/hexanes, 8/2) to give product 56 as a white solid ($2.1 \mathrm{mg}, 30 \%$). $[\alpha]_{D}^{20}=+129^{\circ}(c=$ $0.4, \mathrm{CHCl}_{3}$); ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.76(\mathrm{~s}, 1 \mathrm{H}), 5.66(\mathrm{ddd}, J=16.0,7.2,7.2 \mathrm{~Hz}$, $1 \mathrm{H}), 5.26$ (dd, $J=16.0,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.06(\mathrm{~d}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.03(\mathrm{~d}, J=2.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.06-$ $4.00(\mathrm{~m}, 1 \mathrm{H}), 3.63(\mathrm{dd}, J=9.4,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.39(\mathrm{dq}, J=9.7,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.30(\mathrm{~s}, 3 \mathrm{H}), 3.27$ (dd, $J=7.0,9.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.77(\mathrm{dd}, J=17.1,4.0, \mathrm{~Hz}, 1 \mathrm{H}), 2.73(\mathrm{dd}, J=17.1,4.0 \mathrm{~Hz}, 1 \mathrm{H})$, 2.66 (dd, $J=17.7,8.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.48(\mathrm{dd}, J=17.7,2.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.46-2.38(\mathrm{~m}, 2 \mathrm{H}), 2.30(\mathrm{dd}$, $J=17.1,10.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.28(\mathrm{dd}, J=17.1,10.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.23-2.16(\mathrm{~m}, 1 \mathrm{H}), 2.16-2.10(\mathrm{~m}$, $1 \mathrm{H}), 1.94-1.88(\mathrm{~m}, 1 \mathrm{H}), 1.88-1.83(\mathrm{~m}, 1 \mathrm{H}), 1.82(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.75-1.66(\mathrm{~m}, 3 \mathrm{H}), 1.55$ (ddd, $J=14.0,10.2,5.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.36(\mathrm{ddd}, J=14.0,8.8,3.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.32-1.24(\mathrm{~m}, 1 \mathrm{H})$, $1.11(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 0.90 \mathrm{ppm}(\mathrm{d}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=$ $212.2,172.5,172.2,171.9,135.9,135.2,129.7,126.5,82.5,79.3,72.2,65.1,56.6,47.4,46.7$, 41.1, 38.6, 38.3, 37.3, 34.7, 30.3, 27.2, 26.5, 22.7, 15.6, 13.9, 11.2 ppm ; IR (film): 2981, 2934, 1733, 1591, 1490, 1380, 1360, 1276, 1183, 1135, 1100, 1052, 1024, 1003, 979, 769, $689 \mathrm{~cm}^{-1}$; HRMS (ESI): m / z : calcd for $\mathrm{C}_{27} \mathrm{H}_{41} \mathrm{NO}_{8} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 530.2724$; found: 530.2727.

6	の 1 ）
N	$\checkmark \infty$
\cdots	$\dot{\mathrm{m}}{ }^{\circ}$
N	m
$\stackrel{-}{1}$	$\square \square$

Nウレー $\stackrel{\circ}{\circ} \dot{\nabla}$ ナm m $1 / 1$

サツのウー○○ ∞ に ∞ No $\dot{\circ} \dot{\cos } \dot{\circ} \dot{\circ} \dot{\circ}$

220	210	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20

180	170	160	150	140	130	120											
180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10

$$
\begin{aligned}
& \text { जिते } \\
& \text { シウ்~ } \\
& \text { かのヘス } \\
& \infty N
\end{aligned}
$$

$\stackrel{\sim}{4}$	\circ000+1+1
$\stackrel{\square}{6}$	

$1^{\text {st }}$ diastereomer

$2^{\text {nd }}$ diastereomer

$1^{\text {st }}$ diastereomer

(+ impurities of 1)

(+ impurities of 19)

∞	$\stackrel{\square}{8}$	Niomorin in
$\stackrel{\square}{\circ}$	$\stackrel{1}{1}$	mimojribs
，	$\stackrel{7}{7}$	
1		111

∞	6	N	∞	の	m \rightarrow c
in	n	の	\bigcirc	๑）	Nのの
－	ம்	\bullet°	\cdots	$\stackrel{\circ}{\circ}$	மம்が
∞	\square	m	m	\sim	$\rightarrow-\mathrm{r}$

（＋impurities of $\mathbf{1 9}$ ）

180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20

[^0]: ${ }^{1}$ K. Micoine, A. Fürstner, J. Am. Chem. Soc. 2010, 132, 14064-14066.
 ${ }^{2}$ Y. Egawa, M. Suzuki, T. Okuda. Chem. Pharm. Bull. 1963, 11, 589-586.

[^1]: ${ }^{3}$ K. Ishihara, S. Kondo, H. Yamamoto, J. Org. Chem. 2000, 65, 9125-9128.
 ${ }^{4}$ The original isolation paper reports: $[\alpha]_{D}^{20}=-20(\mathrm{c}=0.5, \mathrm{DMSO})$, cf. K. Sugawara, Y. Nishiyama, S. Toda, N. Komiyama, M. Hatori, T. Moriyama, Y. Sawada, H. Kamei, M. Konishi, T. Oki, J. Antibiot. 1992, 45, 1433-1441. It seems, however, that this value is incorrect. Prof. B. Shen, University of Wisconsin, kindly informed us that the optical rotation of authentic lactimidomycin produced by the original strain deposited at ATCC is in fact positive in DMSO.

[^2]: ${ }^{5}$ J. Ju, J.-W. Seo, Y. Her, S.-K. Lim, B. Shen, Org. Lett. 2007, 9, 5183-5186.

[^3]: ${ }^{6}$ From Fisher Scientific UK. Ref. S/5042/15 - Sodium hypochlorite min 14% available chlorine

[^4]: ${ }^{7}$ I. J. Krauss, M. Mandal, S. J. Danishefsky, Angew. Chem. 2007, 119, 5672-5675; Angew. Chem. Int. Ed. 2007, 46, 5576-5579.

[^5]: ${ }^{8}$ E. N. Jacobsen, W. Zhang, A. R. Muci, J. R. Ecker, L. Deng, J. Am. Chem. Soc 1991, 113, 7063-7064.

